TRB – PG (MATHS) Complete Study Material

- Unit Wise Notes
- Unit Wise Questions
- Previous Year Question Paper (Problem Solved)
- Model Questions
- Education (Jeba's Education Guide)
- Gk (Special Jeba's GK guide with only full material)

<mark>Unit – VI</mark> Functional Analysis

Banach Spaces - Definition and example continuous linear transformations - Banach theorem - Natural embedding of X in X -Open mapping and closed graph theorem -Properties of conjugate of an operator -Hilbert spaces - Orthonormal bases Conjugate space H - Adjoint of an operator - Projections l^2 as a Hilbert space - l^p space - Holders and Minkowski inequalities - Matrices – Basic operations of matrices -Determinant of a matrix - Determinant and spectrum of an operator - Spectral theorem for operators on a finite dimensional Hilbert space - Regular and singular elements in a Banach Algebra - Topological divisor of zero - Spectrum of an element in a Banach algebra - the formula for the spectral radius radical and semi simplicity.

Banach Spaces

Definition (Normed Linear Space)

 Let N be a linear spaces. A norm on N is a real function ||||: N → R satisfying the following conditions:

For $x, y \in N$ and $\propto a$ scalar,

- $||x|| \ge 0$ and $||x|| = 0 \Leftrightarrow x = 0$
- $||x + y|| \le ||x|| + ||y||$
- $\bullet \quad \|\alpha x\| = |\alpha| \|x\|$
- A linear space N, with a norm defined on it, is called a Normed linear space.

Definition : Banach Space

• A complete normed linear space is called a Banach space.

Results :

- 1. $||x|| ||y|| \le ||x y||$
- 2. Norm is a continuous function on N i.e., $||x_n - x|| \to 0$ as $n \to \infty$
- In a normed linear space N, addition and scalar multiplication are jointly continuous.

i.e., if $x_n \to x$, $y_n \to y$ and $\alpha_n \to \alpha$ then $x_n + y_n \to x + y$ and $\alpha_n x_n \to \alpha x$

Example for Banach Spaces

- The real linear space R and the complex linear space C are Banach spaces under the norm defined by ||x|| = |x|, ∀x∈R or C.
- 2. The linear spaces R^n and C^n are Banach spaces under the norm defined by $||x|| = (\sum_{i=1}^n |x_i|^2)^{\frac{1}{2}}, \forall x$ $R^n \to n$ –Dimensional Euclidean space $C^n \to$ Unitary space

 The space of n-tuples of scalars lⁿ_p is a Banach space with the norm

$$||x||_p = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}$$

4. The linear space l_p of all sequence $x = \{x_1, x_2, \dots, x_n, \dots\}$ of scalars such that $\sum_{n=1}^{\infty} |x_n|^p < \infty$ is a Banach space under the norm defined by

$$||x||_p = (\sum_{n=1}^{\infty} |x_n|^p)^{\frac{1}{p}}$$

5. The linear space l_{∞}^{n} is a Banach space under the norm

 $||x||_{\infty} = max\{\{|x_1|, |x_2|, \dots, |x_n|\}\}$

- 6. The linear space l_{∞} , of all bounded sequence $x = \{x_1, x_2, \dots, x_n, \dots\}$ of scalar is a Banach space under the norm $||x|| = Sup_{n=1,2\dots}|x_n|$
- 7. The linear space C(x) of all bounded continuous scalar valued functions defined on a topological space is a Banach space under the norm

 $||f|| = Sup_{x \in X} |f(x)|, f(x) \in \mathcal{C}(x)$

 The space L_P of all measurable functions defined on a measure space X with the property that |f(x)|^p is integrable is a Banach space under the norm

$$\|f\|_p = \left(\int |f(x)|d_m(x)\right)^{\frac{1}{p}}$$

Theorem

Let M be a closed subspace of a normed linear space N and the norm of a coset x + M in the quotient space N/M is defined as $x + M = inf\{||x + m||: m \in M\}$. Then N/m is a normed linear space. If in addition, if N is a Banach space, then so is N/M.

Holder's Inequality :

i.e., $\sum_{i=1}^{n} |x_i y_i| \le ||x||_p ||y||_q$

where
$$p > 1, q > 1$$
 and $\frac{1}{p} + \frac{1}{q} = 1$

Minkowski Inequality

i.e., $||x + y||_p \le ||x||_p + ||y||_p$

Definition (Closed unit sphere)

Let X be a Banach space. A closer unit sphere in X is defined as

$$S = \{x \in X \colon \|x\| \le 1\}$$

Result : S is a convex set.

Some example for closed sphere:

- 1. The linear space R^2 , the set of all ordered pairs, is a Banach space under the norm $||x|| = |x_1| + |x_2|$. The closed unit sphere of R^2 is $S = \{x \in R^2 : ||x|| \le 1\}$ i.e., $S = \{(x_1, x_2) \in \mathbb{R}^2 : |x_1| + |x_2| \le 1\}$
- 2. In R^2 , the norm is defined by

 $||x||_2 = (|x_1|^2 + |x_2|^2)^{\frac{1}{2}}$ We derive a closed unit sphere.

- 3. In R^2 , the norm is defined by $||x||_{\infty} = \max\{|x_1|, |x_2|\}$. We will derive a closed unit sphere.
- 4. We define the norm

 $||x||_p = (|x_1|^p + |x_2|^p)^{\frac{1}{p}}, 1 \le p < \infty$ then S is truly spherical iff p = 2In this case, p < 1, then $S = \{x: ||x|| \le 1\}$ would not be convex.

Definition (Linear transformation)

Let N and N' be two linear spaces over the same system of scalars. A mapping

T: N \rightarrow N' is called a linear transformation if

i)
$$T(x + y) = T(x) + T(y)$$

ii) $T(\alpha x) = \alpha T(x), \forall x, y \in N$
 $\alpha \ a \ scalar$

Equivalently,

 $T(\alpha x + \beta y) = \alpha T(x) + \beta T(y), \forall x, y \in N$ and α, β scalars

Note : T(0) = 0

Definition (Continuous linear transformation)

Let N and N' be two normed linear spaces. Let T: N \rightarrow N' be a linear transformation if whenever $\{x_n\}$ is a sequence in N such that $x_n \rightarrow x$ in N, then the sequence $\{T(x_n)\}$ converges to T(x) in N'

i.e.,
$$x_n \to x \Longrightarrow T(x_n) \to T(x)$$

Theorem

Let N and N' be two normed linear spaces. Let T: N $\rightarrow N'$ be a linear transformation, then the following conditions on T are equivalent to one another:

- T is continuous i)
- ii) T is continuous at the origin in the sense that $x_n \to 0 \Longrightarrow T(x_n) \to 0$
- iii) There exists a real number $K \ge 0$ such that $||T(x)|| \leq K ||x||, \forall x \in \mathbb{N}$
- If $S = \{x : ||x|| \le 1\}$ is the closed iv) unit sphere in N, then its image T(S)is a bounded set in N'

Remarks

By condition (iii) of the above i) theorem, there exists a real number K > 0 such that $||T(x)|| \leq K ||x||, \forall x \in N$ This K is called a bound for T and

hence the linear transformation T is bounded linear transformation

ii) By the above theorem, T is continuous if T is bounded interchangeably

Definition : If T is a continuous linear transformation of N into N', then norm of T is defined as $||T|| = Sup\{||T(x)||: ||x|| \le 1\}$

Remarks

- i) If $N \neq \{0\}$, we can give another equivalent expression of $||T||as ||T|| = Sup\{||T(x)|| : ||x|| \ge 1\}$
- ii) By the conditions (iii) and (iv) of the above theorem

We arrive at

 $||T(x)|| \le ||T|| ||x||, \forall x \in \mathbb{N}$

Notation

The set of all continuous (bounded) linear transformation from N into N' is denoted by $\mathcal{B}(N, N')$

Theorem

Let N and N' be normed linear space then $\mathcal{B}(N, N')$ is a normed linear space with respect to the pointwise linear operation

$$(T+v)(x) = T(x) + v(x)$$

 $(\alpha T)(x) = \alpha T(x)$

and with the norm defined by

 $||T|| = Sup\{||T(x)|| : ||x|| \le 1\}$

further if N' is a Banach space, then $\mathcal{B}(N, N')$ is also a Banach space.

Definition : Algebra

A linear space N is called an algebra if its element can be multiply in such way that N is a ring and the scalar multiplication is related with the multiplication by the way $\alpha(xy) = (\alpha x)y = x(\alpha y)$

Definition : operator

Let N be a normed linear space. A continuous linear transformation of N into itself is called an operator on N. The set of all operators of a normed linear space N is denoted by $\mathcal{B}(N)$

Results :

- If N is a Banach space, then B(N) is also a Banach space
- 2. $\mathcal{B}(N)$ is an algebra where the multiplication of its elements is defined as $(Tv)(x) = T(vx), \forall v, T \in \mathcal{B}(N)$ and $x \in N$
- In B(N), multiplication is jointly continuous i.e.,

 $Tn \rightarrow T \text{ and } Tn' \rightarrow T' \Longrightarrow TnTn' \rightarrow TT'$

4. If N ≠ {0}, then the identity transformation I of N into itself is the identity element of the algebra

 $\mathcal{B}(N)$ and ||I|| = 1

Definition

Let N and N' be normed linear spaces

- An isometric isomorphism of N to N' is a one-to-one linear transformation of N into N' such that ||T(x)|| = ||x||, ∀x∈R
- 2. N is isometrically isomorphic to N' if T an isometric isomorphism of N onto N'

Results

- If M is closed subspaces of a normed linear space N and if T is a natural mapping of N onto N/M defined by T(x) = x + M, ∀x∈N, then T is a continuous linear transformation for which ||T|| ≤ 1
- If T is a continuous linear transformation from a normed linear space to another normed linear space N' and if M is its null space, then there exists a natural linear transformation T' of N/M into N' which is such that ||T'|| = ||T||

Theorem

Let M be a linear subspace of a normed linear space N and let f be functional defined on M. If x_0 is not a vector in M and if $M_0 = M + x_0$ is the linear subspace generated By *M* and x_0 , then *f* can be extended to a functional f_0 on M_0

such that $||f|| = ||f_0||$

Theorem (The Hahn-Banach theorem)

Let M be a linear subspaces of a normed linear space N and let f be a functional defined on M. Then f can be extended to functional f_0 defined on the whole spaces N such that $||f|| = ||f_0||$

Conjucate space of L_p

Let X be a measure space with measure m and p be a general real number such that $1 Consider the Banach space of <math>l_p$ of all measurable functions f defined on x such that $|f(x)|^p$ is integrable

Let *g* be an element of L_q where $\frac{1}{p} + \frac{1}{q} = 1$ Define a function F_q on L_p by

$$F_{g}(f) = \int f(x)g(x)d_{m}(x)$$

$$|F_{g}(f)| = \left| \int f(x)g(x)d_{m}(x) \right|$$

$$\leq \int |f(x)g(x)d_{m}(x)|$$

$$|fg(f)| \leq ||f||_{p}||g||_{q},$$

$$(by \ Holder's \ inequality)$$
Taking Sup for all functions
$$f \epsilon Lp \ such \ that ||f||_{p} \leq 1$$
We get $||F_{g}|| \leq ||g||_{q}$

It shows that F_g is well defined a scalar valued continuous linear function on L_p with the property that ||F_g|| ≤ ||g||_q

- It can be also be shown that every linear functional L_p arises in this way
- Hence $g \to L_p$ is linear and is an isometric isomorphism of L_q into L_p^*
- This we write as $L_p^* = L_q$

Remarks

 If we consider that such specialization to the space of all n-tuples of scalars we have (lpⁿ)^{*} = lp^{*} If p = 1, we have (L1ⁿ)^{*} = Lⁿ_∞

If p = 1, we have $(L_1) = L_{\infty}^{\infty}$

2. If we specialize to the space of all sequence of scalar, we have $l_p^* = l_q$ When p = 1, $l_1^* = l_{\infty}$ and $C_0^* = l_1$

Theorem

If N is a normed linear space and if x_0 is a non-zero vector in N, then there exist a functional f_0 in N* such that

 $f(x_0) = ||x_0||$ and $||f_0|| = 1$

Remarks

N* seperates vectors in N
 i.e., let x, y∈N with x ≠ y
 then there exists a function in N* such that f(x) ≠ f(y)

Theorem

If M is a closed linear subspace of a normed linear space N and x_0 is not a vector in M, then there exists a functional f_0 in N^*

such that f(M) = 0 and $f_0(x_0) \neq 0$

(i.e, Banach space has rich supply functionals)

Result

Let M be a closed linear subspace of a normed linear space N and let x_0 be a vector not in M. if d is the distance from x_0 to M. Then there exists a functional f_0 in N* such that

$$f_0(M) = 0$$
 and $f(x_0) = 1$ and $||f_0|| = \frac{1}{d}$

Definition (second conjugate space, N)**

Let N be a normed linear space. Then the conjugate space of the conjugate space is defined by N^{**} is called the second conjugate space of N

Result

Let N be a normed linear space. Then each vector x in N induces a functional F_x on N* defined by $F_x(f) = f(x)$ for all $f \in N^*$ Such that $||f_x|| = ||x||$ Then the mapping $J: N \to N^{**}$ $(i. e., x \rightarrow F_x)$ defines an isometric isomorphism of N into N**

$$C_0^* = l_1 \text{ and } C_0^{**} = l_1^* = l_\infty$$

Remarks

- 1. The functional $F_{x,}$ in the above result, is called induced functional.
- 2. The isometric isomorphism $x \to F_x$ is called the normal imbedding of N in N**, for it allows as to record N as a part of N** without altering any of its structure as a normed linear space. Hence we write $N \subseteq N^{**}$

Definition

A normed linear space N is said to be reflexive if $N \equiv N^{**}$

(i.e., the above isometric isomorphic is onto also)

The spaces l_p for 1 are reflexive $for <math>l_p^* = l_q$ but $l_q^* = l_p$

i.e., $({l_p}^*)^* = l_p$

i.e., $l_p^{**} = l_p$

Remarks

- 1. Since N** is complete, N is necessarily complete if it is reflexive.
- 2. But if N is complete, then it need not be reflexive.

For example

If B and B' are Banach space and if T is continuous linear transformation of B onto B', then the image of each open sphere centred on the origin in B contains an open sphere centred on the origin in B'

Theorem (The open mapping theorem)

If B and B' are Banach space if T is a continuous linear transformation of B onto B', then T is an open mapping

 $(i.e., G \text{ is open in } B \Longrightarrow T(G) \text{ is open in } B')$

Theorem

A one-to-one continuous linear transformation of one Banach space onto another is a homomorphism.