

- Unit Wise - Notes
- Unit Wise Questions
- Previous Year Question Paper (Problem Solved)
- Model Questions
- Education (Jeba's Education Guide)
- Gk (Special Jeba's GK guide with only full material)

Unit - VI

Functional Analysis

Banach Spaces - Definition and example continuous linear transformations - Banach theorem - Natural embedding of X in X Open mapping and closed graph theorem Properties of conjugate of an operator Hilbert spaces - Orthonormal bases Conjugate space H-Adjoint of an operator - Projections l^{2} as a Hilbert space $-l^{p}$ space - Holders and Minkowski inequalities - Matrices - Basic operations of matrices Determinant of a matrix - Determinant and spectrum of an operator - Spectral theorem for operators on a finite dimensional Hilbert space - Regular and singular elements in a Banach Algebra - Topological divisor of zero - Spectrum of an element in a Banach algebra - the formula for the spectral radius radical and semi simplicity.

Banach Spaces

Definition (Normed Linear Space)

- Let N be a linear spaces. A norm on N is a real function $\|\|: N \rightarrow R$ satisfying the following conditions: For $x, y \in N$ and $\propto a$ scalar,
- $\|x\| \geq 0$ and $\|x\|=0 \Leftrightarrow x=0$
- $\|x+y\| \leq\|x\|+\|y\|$
- $\quad\|\alpha x\|=|\alpha|\|x\|$
- A linear space N , with a norm defined on it, is called a Normed linear space.

Definition : Banach Space

- A complete normed linear space is called a Banach space.

Results :

1. $\|x\|-\|y\| \leq\|x-y\|$
2. Norm is a continuous function on N i.e., $\left\|x_{n}-x\right\| \rightarrow 0$ as $n \rightarrow \infty$
3. In a normed linear space N , addition and scalar multiplication are jointly continuous.
i.e., if $x_{n} \rightarrow x, y_{n} \rightarrow y$ and $\alpha_{n} \rightarrow \alpha$ then
$x_{n}+y_{n} \rightarrow x+y$ and $\alpha_{n} x_{n} \rightarrow \alpha x$

Example for Banach Spaces

1. The real linear space R and the complex linear space C are Banach spaces under the norm defined by $\|x\|=|x|, \forall x \in R$ or C.
2. The linear spaces R^{n} and C^{n} are Banach spaces under the norm defined by $\|x\|=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{\frac{1}{2}}, \forall x$
$R^{n} \rightarrow n$-Dimensional Euclidean space
$C^{n} \rightarrow$ Unitary space
3. The space of n-tuples of scalars l_{p}^{n} is a Banach space with the norm

$$
\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

4. The linear space l_{p} of all sequence $x=\left\{x_{1}, x_{2}, \ldots . x_{n}, \ldots.\right\}$ of scalars such that $\sum_{n=1}^{\infty}\left|x_{n}\right|^{p}<\infty$ is a Banach space under the norm defined by

$$
\|x\|_{p}=\left(\sum_{n=1}^{\infty}\left|x_{n}\right|^{p}\right)^{\frac{1}{p}}
$$

5. The linear space $l_{\infty}{ }^{n}$ is a Banach space under the norm

$$
\|x\|_{\infty}=\max \left\{\left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots \ldots\left|x_{n}\right|\right\}\right\}
$$

6. The linear space l_{∞}, of all bounded sequence $\quad x=\left\{x_{1}, x_{2}, \ldots . x_{n}, \ldots.\right\} \quad$ of scalar is a Banach space under the norm $\|x\|=\operatorname{Sup}_{n=1,2 \ldots}\left|x_{n}\right|$
7. The linear space $C(x)$ of all bounded continuous scalar valued functions defined on a topological space is a Banach space under the norm
$\|f\|=\operatorname{Sup}_{x \in X}|f(x)|, f(x) \epsilon C(x)$
8. The space L_{P} of all measurable functions defined on a measure space X with the property that $|f(x)|^{p}$ is integrable is a Banach space under the norm

$$
\|f\|_{p}=\left(\int|f(x)| d_{m}(x)\right)^{\frac{1}{p}}
$$

Theorem

Let M be a closed subspace of a normed linear space N and the norm of a coset $x+M$ in the quotient space N / M is defined as $\quad x+M=\inf \{\|x+m\|: m \in M\}$. Then N / m is a normed linear space. If in addition, if N is a Banach space, then so is N / M.

Holder's Inequality :

$$
\sum_{i=1}^{n}\left|x_{i} y_{i}\right| \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}\left(\sum_{i=1}^{n}\left|y_{i}\right|^{q}\right)^{\frac{1}{q}}
$$

i.e., $\sum_{i=1}^{n}\left|x_{i} y_{i}\right| \leq\|x\|_{p}\|y\|_{q}$
where $p>1, q>1$ and $\frac{1}{p}+\frac{1}{q}=1$

Minkowski Inequality

$$
\left(\sum_{i=1}^{n}\left|x_{i} y_{i}\right|^{p}\right)^{\frac{1}{p}} \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}\left(\sum_{i=1}^{n}\left|y_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

i.e., $\|x+y\|_{p} \leq\|x\|_{p}+\|y\|_{p}$

Definition (Closed unit sphere)

Let X be a Banach space. A closer unit sphere in X is defined as

$$
S=\{x \in X:\|x\| \leq 1\}
$$

Result : S is a convex set.

Some example for closed sphere:

1. The linear space R^{2}, the set of all ordered pairs, is a Banach space under the norm $\|x\|=\left|x_{1}\right|+\left|x_{2}\right|$. The closed unit sphere of R^{2} is $S=\left\{x \in R^{2}:\|x\| \leq 1\right\}$ i.e., $S=\left\{\left(x_{1}, x_{2}\right) \epsilon R^{2}:\left|x_{1}\right|+\left|x_{2}\right| \leq 1\right\}$
2. In R^{2}, the norm is defined by $\|x\|_{2}=\left(\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}\right)^{\frac{1}{2}}$ We derive a closed unit sphere.
3. In R^{2}, the norm is defined by $\|x\|_{\infty}=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|\right\}$. We will derive a closed unit sphere.
4. We define the norm
$\|x\|_{p}=\left(\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}\right)^{\frac{1}{p}}, 1 \leq p<\infty$
then S is truly spherical iff $p=2$
In this case, $p<1$, then
$S=\{x:\|x\| \leq 1\}$ would not be convex.

Definition (Linear transformation)

Let N and N^{\prime} be two linear spaces over the same system of scalars. A mapping
$\mathrm{T}: \mathrm{N} \rightarrow N^{\prime}$ is called a linear transformation if
i) $\quad T(x+y)=T(x)+T(y)$
ii) $\quad T(\alpha x)=\alpha T(x), \forall x, y \in N$
α a scalar
Equivalently,

$$
\begin{gathered}
T(\alpha x+\beta y)=\alpha T(x)+\beta T(y), \forall x, y \in N \\
\text { and } \alpha, \beta \text { scalars }
\end{gathered}
$$

Note: $T(0)=0$

Definition

 transformation)Let N and N^{\prime} be two normed linear spaces. Let $\mathrm{T}: \mathrm{N} \rightarrow N^{\prime}$ be a linear transformation if whenever $\left\{x_{n}\right\}$ is a sequence in N such that $x_{n} \rightarrow x$ in N , then the sequence $\left\{T\left(x_{n}\right)\right\}$ converges to $T(x)$ in N^{\prime}
i.e., $x_{n} \rightarrow x \Rightarrow T\left(x_{n}\right) \rightarrow T(x)$

Theorem

Let N and N^{\prime} be two normed linear spaces. Let $\mathrm{T}: \mathrm{N} \rightarrow N^{\prime}$ be a linear transformation, then the following conditions on T are equivalent to one another:
i) $\quad \mathrm{T}$ is continuous
ii) $\quad \mathrm{T}$ is continuous at the origin in the sense that $x_{n} \rightarrow 0 \Longrightarrow T\left(x_{n}\right) \rightarrow 0$
iii) There exists a real number $K \geq 0$ such that $\|T(x)\| \leq K\|x\|, \forall x \in N$
iv) If $S=\{x:\|x\| \leq 1\}$ is the closed unit sphere in N, then its image $T(S)$ is a bounded set in N^{\prime}

Remarks

i) By condition (iii) of the above theorem, there exists a real number $K \geq 0$ such that

$$
\|T(x)\| \leq K\|x\|, \forall x \in N
$$

This K is called a bound for T and hence the linear transformation T is bounded linear transformation
ii) By the above theorem, T is continuous if T is bounded interchangeably

Definition : If T is a continuous linear transformation of N into N^{\prime}, then norm of T is defined as $\|T\|=\operatorname{Sup}\{\|T(x)\|:\|x\| \leq 1\}$

Remarks

i) If $N \neq\{0\}$, we can give another equivalent \quad expression \quad of
$\|T\| a s\|T\|=\operatorname{Sup}\{\|T(x)\|:\|x\| \geq 1\}$
ii) By the conditions (iii) and (iv) of the above theorem

We arrive at

$$
\|T(x)\| \leq\|T\|\|x\|, \forall x \in N
$$

Notation

The set of all continuous (bounded) linear transformation from N into N^{\prime} is denoted by $\mathcal{B}\left(N, N^{\prime}\right)$

Theorem

Let N and N^{\prime} be normed linear space then $\mathcal{B}\left(N, N^{\prime}\right)$ is a normed linear space with respect to the pointwise linear operation

$$
\begin{gathered}
(T+v)(x)=T(x)+v(x) \\
(\alpha T)(x)=\alpha T(x)
\end{gathered}
$$

and with the norm defined by
$\|T\|=\operatorname{Sup}\{\|T(x)\|:\|x\| \leq 1\}$
further if N^{\prime} is a Banach space, then $\mathcal{B}\left(N, N^{\prime}\right)$ is also a Banach space.

Definition : Algebra

A linear space N is called an algebra if its element can be multiply in such way that N is a ring and the scalar multiplication is related with the multiplication by the way $\alpha(x y)=(\alpha x) y=x(\alpha y)$

Definition : operator

Let N be a normed linear space. A continuous linear transformation of N into itself is called an operator on N . The set of all operators of a normed linear space N is denoted by $\mathcal{B}(N)$

Results :

1. If N is a Banach space, then $\mathcal{B}(N)$ is also a Banach space
2. $\mathcal{B}(N)$ is an algebra where the multiplication of its elements is defined as $(T v)(x)=T(v x), \forall v, T \in \mathcal{B}(N)$ and $x \in N$
3. In $\mathcal{B}(N)$, multiplication is jointly continuous i.e.,

$$
T n \rightarrow T \text { and } T n^{\prime} \rightarrow T^{\prime} \Rightarrow T n T n^{\prime} \rightarrow T T^{\prime}
$$

4. If $N \neq\{0\}$, then the identity transformation I of N into itself is the identity element of the algebra

$$
\mathcal{B}(N) \text { and }\|I\|=1
$$

Definition

Let N and N^{\prime} be normed linear spaces

1. An isometric isomorphism of N to N^{\prime} is a one-to-one linear transformation of N into N^{\prime} such that $\|T(x)\|=\|x\|, \forall x \in R$
2. N is isometrically isomorphic to N^{\prime} if T an isometric isomorphism of N onto N^{\prime}

Results

1. If M is closed subspaces of a normed linear space N and if T is a natural mapping of N onto N / M defined by $T(x)=x+M, \forall x \in N$, then T is a continuous linear transformation for which $\|T\| \leq 1$
2. If T is a continuous linear transformation from a normed linear space to another normed linear space N^{\prime} and if M is its null space, then there exists a natural linear transformation T^{\prime} of N / M into N^{\prime} which is such that $\left\|T^{\prime}\right\|=\|T\|$

Theorem

Let M be a linear subspace of a normed linear space N and let f be functional defined on M. If x_{0} is not a vector in M and if $M_{0}=M+x_{0}$ is the linear subspace generated By M and x_{0}, then f can be extended to a functional f_{0} on M_{0} such that $\|f\|=\left\|f_{0}\right\|$

Theorem (The Hahn-Banach theorem)

Let M be a linear subspaces of a normed linear space N and let f be a functional defined on M . Then f can be extended to functional f_{0} defined on the whole spaces N such that $\|f\|=\left\|f_{0}\right\|$

Conjucate space of L_{p}

Let X be a measure space with measure m and p be a general real number such that $1<p<\infty$ Consider the Banach space of l_{p} of all measurable functions f defined on x such that $|f(x)|^{p}$ is integrable

Let g be an element of L_{q} where $\frac{1}{p}+\frac{1}{q}=1$
Define a function F_{g} on L_{p} by

$$
\begin{aligned}
F_{g}(f) & =\int f(x) g(x) d_{m}(x) \\
\left|F_{g}(f)\right| & =\left|\int f(x) g(x) d_{m}(x)\right| \\
& \leq \int\left|f(x) g(x) d_{m}(x)\right| \\
|f g(f)| & \leq\|f\|_{p}\|g\|_{q},
\end{aligned}
$$

(by Holder's inequality)
Taking Sup for all functions
$f \in L p$ such that $\|f\|_{p} \leq 1$
We get $\left\|F_{g}\right\| \leq\|g\|_{q}$

- It shows that F_{g} is well defined a scalar valued continuous linear function on L_{p} with the property that $\left\|F_{g}\right\| \leq\|g\|_{q}$
- It can be also be shown that every linear functional L_{p} arises in this way
- Hence $g \rightarrow L_{p}$ is linear and is an isometric isomorphism of L_{q} into $\mathrm{L}_{\mathrm{p}}{ }^{*}$
- This we write as $L_{p}^{*}=L_{q}$

Remarks

1. If we consider that such specialization to the space of all n-tuples of scalars we have $\left(l_{p}{ }^{n}\right)^{*}=l_{p}{ }^{*}$
If $p=1$, we have $\left(L_{1}{ }^{n}\right)^{*}=L_{\infty}^{n}$
2. If we specialize to the space of all sequence of scalar, we have $l_{p}{ }^{*}=l_{q}$

When $p=1, l_{1}{ }^{*}=l_{\infty}$ and $C_{0}^{*}=l_{1}$

Theorem

If N is a normed linear space and if x_{0} is a non-zero vector in N , then there exist a functional f_{0} in N^{*} such that
$f\left(x_{0}\right)=\left\|x_{0}\right\|$ and $\left\|f_{0}\right\|=1$

Remarks

1. N^{*} seperates vectors in N
i.e., let $x, y \in N$ with $x \neq y$
then there exists a function in N^{*} such that $f(x) \neq f(y)$

Theorem

If M is a closed linear subspace of a normed linear space N and x_{0} is not a vector in M , then there exists a functional f_{0} in N^{*}

$$
\operatorname{such} \operatorname{that} f(M)=0 \text { and } f_{0}\left(x_{0}\right) \neq 0
$$

(i.e, Banach space has rich supply functionals)

Result

Let M be a closed linear subspace of a normed linear space N and let x_{0} be a vector not in M. if d is the distance from x_{0} to M. Then there exists a functional f_{0} in N^{*} such that

$$
f_{0}(M)=0 \text { and } f\left(x_{0}\right)=1 \text { and }\left\|f_{0}\right\|=\frac{1}{d}
$$

Definition (second conjugate space, $\mathbf{N}^{* *}$)

Let N be a normed linear space. Then the conjugate space of the conjugate space is defined by $\mathrm{N}^{* *}$ is called the second conjugate space of N

Result

Let N be a normed linear space. Then each vector x in N induces a functional F_{x} on N^{*} defined by $F_{x}(f)=f(x)$ for all $f \in N^{*}$

Such that $\left\|f_{x}\right\|=\|x\|$
Then the mapping $J: N \rightarrow N^{* *}$
(i.e., $x \rightarrow F_{x}$) defines an isometric isomorphism of N into $\mathrm{N}^{* *}$

Remarks

1. The functional F_{x}, in the above result, is called induced functional.
2. The isometric isomorphism $x \rightarrow F_{x}$ is called the normal imbedding of N in $\mathrm{N}^{* *}$, for it allows as to record N as a part of $\mathrm{N}^{* *}$ without altering any of its structure as a normed linear space. Hence we write $N \subseteq N^{* *}$

Definition

A normed linear space N is said to be reflexive if $N \equiv N^{* *}$
(i.e., the above isometric isomorphic is onto also)

The spaces l_{p} for $1<p<\infty$ are reflexive for $l_{p}{ }^{*}=l_{q}$ but $l_{q}{ }^{*}=l_{p}$ i.e., $\left(l_{p}^{*}\right)^{*}=l_{p}$
i.e., $l_{p}^{* *}=l_{p}$

Remarks

1. Since $\mathrm{N}^{* *}$ is complete, N is necessarily complete if it is reflexive.
2. But if N is complete, then it need not be reflexive.

For example

$$
C_{0}{ }^{*}=l_{1} \text { and } C_{0}{ }^{* *}=l_{1}{ }^{*}=l_{\infty}
$$

Theorem

If B and B^{\prime} are Banach space and if T is continuous linear transformation of B onto B^{\prime}, then the image of each open sphere centred on the origin in B contains an open sphere centred on the origin in B^{\prime}

Theorem (The open mapping theorem)

If B and B^{\prime} are Banach space if T is a continuous linear transformation of B onto B^{\prime}, then T is an open mapping

$$
\text { (i.e., } \left.G \text { is open in } B \Rightarrow T(G) \text { is open in } B^{\prime}\right)
$$

Theorem

A one-to-one continuous linear transformation of one Banach space onto another is a homomorphism.

