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CLASS -I 

Holder’s inequality 

            If p> 1and 
1

𝑝
+

1

𝑞
= 1,then        𝑥𝑖𝑦𝑖 

𝑛
𝑖=1 ≤ [  𝑥𝑖 

𝑝]𝑛
𝑖=1

1

𝑝 [  𝑦𝑖 
𝑞 ]𝑛

𝑖=1

1

𝑞       OR 

                        𝑥𝑖𝑦𝑖 
𝑛
𝑖=1 ≤ [  𝑥𝑖 ]𝑛

𝑖=1 [  𝑦𝑖  ]𝑛
𝑖=1   

Holder’s inequality For intgrable function 

     𝑓 𝑥 𝑔(𝑥) 
𝑏

𝑎
dx≤ [  𝑓(𝑥) 𝑝𝑑𝑥]

1

𝑝
𝑏

𝑎
[  𝑔(𝑥) 𝑞𝑑𝑥]

1

𝑞
𝑏

𝑎
 

     𝑝𝑢𝑡 𝑝 = 𝑞 = 2 ,then, 

       𝑥𝑖𝑦𝑖  
𝑛
𝑖=1 ≤ [  𝑥𝑖 

2]𝑛
𝑖=1

1

2 [  𝑦𝑖  
2]𝑛

𝑖=1

1

2   or 

    [   𝑥𝑖𝑦𝑖   ]
𝑛
𝑖=1

2
≤ [  𝑥𝑖 

2]𝑛
𝑖=1 [  𝑦𝑖 

2]𝑛
𝑖=1  

    𝑇𝑖𝑠 𝑖𝑠 𝑘𝑛𝑜𝑤𝑛 𝑎𝑠 𝑐𝑎𝑢𝑐𝑦 ′s inequality 

Minkowsk’s inequality 

 If p≥1,then     [  𝑥𝑖 + 𝑦𝑖  
𝑛
𝑖=1 

𝑝
]

1

𝑝   ≤   [  𝑥𝑖 
𝑛
𝑖=1 

𝑝
]

1

𝑝   + [  𝑦𝑖  
𝑛
𝑖=1 

𝑝
]

1

𝑝  

 

 If f and g are real or complex valued integrable function defined on [a,b], Then 

   [  𝑓 𝑥 + 𝑔 𝑥  
𝑏

𝑎
dx]𝑝𝑑𝑥 ≤ [  𝑓 𝑥  𝑝𝑑𝑥]

1

𝑝
𝑏

𝑎
+ [  𝑔(𝑥) 𝑞𝑑𝑥]

1

𝑞
𝑏

𝑎
  where p≥ 1 

Metric space 

         Let X be a non-empty set. A metric on X is a real valued function X× 𝑋 satisfying the 

following Three conditions, 

 For every x,y ∈ 𝑋 𝑎𝑛𝑑 𝑥 ≠ 𝑦 

1. d(x,y)≥0 and d(x,y) = 0 if and only if x =y 

2. d(x,y) = d(y,x) for every x,y∈ 𝑋 

3. d(x, y) ≤d(x, z) + d(z,y)  for any x,y,z ∈ 𝑋 

d(x,y) is called the distance between x and y ,it is finite non-negative real number. 

𝑵𝒐𝒓𝒎𝒆𝒅 𝒍𝒊𝒏𝒆𝒂𝒓 𝒔𝒑𝒂𝒄𝒆𝒔  

        Let N be a complex or real linear space a norm on N is a function such that  

   (  : 𝑁 → 𝑅 ) 

i.  𝑥 ≥ 0 and  𝑥 = 0 ⟺ x = 0 



ii.  𝑥 + 𝑦 ≤  𝑥 +  𝑦  

iii.  𝑎𝑥  = 𝑎  𝑥  for all x,y𝜖𝑁 and a𝜖𝑐 𝑜𝑟 𝑅 

 N is called  a normed linear  space. 

Definition 

        Let N be a normed linear space, a sequence {xn} in N is said to converge to an element x in 

N if given 𝜀 > 0,there exists a positive integer n0 such that  

 𝑥𝑛 − 𝑥  < 𝜀 for all n≥n0 

𝐼𝑡 𝑖𝑠 𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑏𝑦   lim𝑥→∞ 𝑥𝑛 = 𝑥 

xn→ 𝑥 𝑖𝑓𝑓 𝑥𝑛 − 𝑥 → 0 as n→ ∞ 

Theorems 

 A normed linear space N is a matric space with respect to the metric d defined by 

       D(x,y) =  𝑥 − 𝑦   for all x,y 𝜖𝑁 

 If N is a normed linear space,Then  

   𝑥 +  𝑦   ≤  𝑥 +  𝑦  

 

   𝑥 −  𝑦   ≤  𝑥 − 𝑦  

 

 If N is a normed linear space,Then the norm   : 𝑁 → 𝑅 is continuous on N. 

 The operation of addition and scalar multiplication in N are jointly continuous. 

        If xn →x, yn → 𝑦 and an→ 𝑎 ,Then xn+yn→ x+y, anxn→ax 

 Let N be a normed linear space and M be a subspace of N, then the closure 𝑀  of M is 

also a subspace of N 

 A subset M in a normed linear space N is bounded if and only if there is a positive 

constant C such that  𝑥 ≤ 𝐶  for all x 𝜖𝑀 

Cauchy sequence 

        A sequence {xn} in N is called a Cauchy sequence in N ,If given 𝜀 ≥ 0there exists a  

positive integer n0 such that  𝑥𝑛 − 𝑥𝑚  < 𝜀 for all m,n≥n0 

        If {xn} is a Cauchy sequence in N,Then  𝑥𝑛 − 𝑥𝑚 → 0 𝑎𝑠 m,n→ ∞ 

   

 



Properties of a Cauchy sequence 

i. If N is normed linear space ,then every convergent sequence is a Cauchy sequence. 

        It’s converse is not true 

ii. Every Cauchy sequence in a normed linear space is bounded. 

Complete 

     A normed linear space N is said to be complete if every Cauchy sequence in N converges 

to an element of  N. 

⇒ If  𝑥𝑛 − 𝑥𝑚 → 0 𝑎𝑠,n→ ∞, then there exists x 𝜖𝑁 such that 

        𝑥𝑛 − 𝑥  → 0 𝑎𝑠,n→ ∞, 

𝑩𝒂𝒏𝒂𝒄𝒉 𝒔𝒑𝒂𝒄𝒆  

  A complete normed linear space is called a Banach space. 

 Every complete subspace M of a normed linear space is closed 

Convergent of series 

       A series  𝑥𝑛
∞
𝑛=1 , xn 𝜖𝑁 is said to be convergent to x 𝜖𝑁, If the sequence of partial 

sums {sn} converges to x in N. 

A series  𝑥𝑛
∞
𝑛=1  is said to be absolutely convergent if   𝑥𝑛 ∞

𝑛=1  is convergent. 

Theorem 

      A normed linear space N is complete if and only if every absolutely convergent series is 

convergent. 

Example of Banach spaces. 

1. The real linear space R and the complex linear space C are normed linear space 

under the norm  𝑥 =  𝑥  for all x𝜖𝑅  𝑜𝑟 𝐶 

     R and C are complete ⇒ R and C are Banach spaces. 

2. The linear space R
n
 or C

n
 are Banach space with Norm,  𝑥  = [  𝑥𝑖 

2]𝑛
𝑖=1

1

2 

3. (i) R
n
 or C

n
 are Banach space with Norm,  𝑥  = [  𝑥𝑖 

𝑝]𝑛
𝑖=1

1

𝑝  ,1≤ 𝑝 ≤ ∞ 

 Which is denited by lp
n
 

      (ii)  𝑥  = Max {  𝑥1 ,  𝑥2 ,  𝑥3 , …     ,  𝑥𝑛  } , which is denoted by 𝑙∞
𝑛  



4. The linear space C of all convergent sequence x = {xn} with the Norm. 

                   𝑥  = sup1≤𝑛≤∞ 𝑥𝑛   is a Banach space denoted by C 

5. The linear space 𝑙∞ of all bounded sequence x = {xn} with the Norm. 

                   𝑥  = sup1≤𝑛≤∞ 𝑥𝑛   is a Banach space. 

6. The linear space 𝑙𝑝 , p> 1 of all sequences [  𝑥𝑖 
𝑝]∞

𝑖=1 < ∞ with norm  

                     𝑥  = [  𝑥𝑖 
𝑝]𝑛

𝑖=1

1

𝑝  is a Banach space, It is denoted by   𝑝  

7.   If [a,b] is a bounded and closed interval, The linear space C[a,b] of all continuous 

functions defined on [a,b] is a Banach space with the norm, 

                   𝑓 = Sup{ 𝑓(𝑥)  / x𝜖[a.b]} 

8. Let C(x) be the set of all continuous real valued function on a compact metric space 

X, then C(X) is a Banach space with the norm 

     𝑓 = Sup{ 𝑓(𝑥)  / x𝜖X] 

𝑺𝒆𝒑𝒂𝒓𝒂𝒃𝒍𝒆  

                  A normed linear space N is said to be separable if it has a countable dense  subset. 

              ie., There is a countable subset D in N such that 𝐷 = 𝑁 

Example 

1. Every subset of a separable normal linear space is separable 

2. The normed linear space 𝑙𝑝 , 1≤ 𝑝 ≤ ∞ are separable 

3. The space 𝑙∞ is not separable 

Quatient space 

   Let N be a normed linear space and M be a subspace of  N, Then 
𝑁

𝑀
= {𝑥 + 𝑀/𝑥𝜖N} is 

called Quotient space. 

  It is denoted by Q(x) 

 Q(x) is called canonical( Natural ) mapping of  L onto 
𝑁

𝑀
 

 

 



Theorem: 

        If M is a closed linear subspace of a normed linear space N, Then quotian space 
𝑁

𝑀
 is a 

normed linear space with norm of each cosert x+M defined as  

     𝑥 + 𝑀  = inf{  𝑥 + 𝑚  /m𝜖M }. 

If N is Banach space, then the quotient space 
𝑁

𝑀
 is also a Banach space with above norm 

Direct sum of subspace 

         Let M and N  are  subspace of Banach space B, If every element z on B is represented 

uniquely in the form z = x+y ,x𝜖M,y𝜖N,Then B is said to be direct sum of N,M 

      It is denoted by B = M⊕N 

Theorem 

      Let a Banach Space B = M⊕N and z𝜖B be z =x+y uniquely with x𝜖M,y𝜖N ,then  

 𝑧 1 =  𝑥 +  𝑦  is a normal on direct sum B = M⊕N 

          If B1 is the direct sum space with this new norm, then B1 is a Banach space if M and 

N are closed. 

Continuous linear Transformation 

     T:N→N
1
 is continuous if and only if xn→x in N implies T(xn) →T(x) in N

1
 

1. Zero Transformation is denoted by 0 

2.Identity Transformation is denoted by I 

Theorem 

     If T is continuous at the origin, Then it is continuous everywhere and the continutity is 

uniform. 

Bounded linear transformation 

     A linear transformation     T:N→N
1
 is said to be bounded linear transformation if there 

exists a positive constant M such that  𝑇(𝑥) ≤M 𝑥  for all x𝜖N. 

Theorem 

1. T:N→N
1
 is bounded if and only if T is continuous. 

2. Let T:N→N
1
 be a linear transformation ,Then T is bounded if and only if T maps 

bounded sets in N into bounded set in N
1
 



Bound of T 

          Let T be a bounded linear transformation  of N into N
1
, Then the norm ,  

 𝑇(𝑥) = inf{M/  𝑇(𝑥) ≤M 𝑥  for all x𝜖N} is called the bound of T  (OR) 

 𝑇  = sup{
 𝑇(𝑥) 

 𝑥 
 / x𝜖N and x≠ 0 } 

Theorem 

        If N and N
1
 are normed linear space and T:N→N

1
, Then the following are equivalent 

(a)  𝑇   = sup{
 𝑇(𝑥) 

 𝑥 
 / x𝜖N and x≠ 0 } 

(b)  𝑇  = sup{ 𝑇(𝑥)  / x𝜖N and  𝑇 ≤ 1 } 

(c)  𝑇  = sup{ 𝑇(𝑥)  / x𝜖N and  𝑇 = 1} 

B(N,N
1
) 

    The set of all bounded linear transformation  of normed space N into N
1
 is denoted by 

B(N,N
1
) 

Theorem 

 B(N,N
1
) is a normed linear space with linear operation  

(i) (T1+T2)(x) = T1(x)+T2(x),  

          (ii)  (aT)x = aT(x) and norm defined by  𝑇  = sup{
 𝑇(𝑥) 

 𝑥 
 / x𝜖N and x≠ 0 } 

         If N
1
 is a Banach space ,then B(N,N

1
) is also Banach space. 

1. If T1,T2 𝜖 B(N,N
1
), the 

     𝑇1𝑇2 ≤  𝑇1  𝑇2   

2. If Tn→T and Tn
1→T

1
, Then TnTn

1→TT
1
 as n→ ∞ which implies that the 

multiplication is jointly continuous. 

Theorem 

 Let M be a closed subspace of a normed linear space and T be the natural mapping of 

N onto the quotient space 
𝑁

𝑀
 defined by T(x) =x+M,Then T is bounded linear 

transformation with  𝑇 ≤ 1 

 Let N and N
1
 be normed linear space and let T:N→N

1
 be a bounded linear 

transformation of N into N
1
,If M is the kernel of T, then 

i) M is closed subspace of  N 

ii) T induces a natural transformation T
1
 of N/M onto N

1  
such that  𝑇1 =  𝑇  



 Definition 

    Let N and N
1
 be normed linear space ,an isometric isomorphism of  N into N

1
 is a one-

one linear transformation T of N into N
1
 such that  𝑇(𝑥)  = 𝑥  for all x∈ 𝑁 

       For any x,y ∈ 𝑁 ⇒  𝑇 𝑥 − 𝑇(𝑦)  = 𝑇(𝑥 − 𝑦)  = 𝑥 − 𝑦   

Definition     

 Topologically isomorphic 

        Two normed linear space N and N
1
 are said to be topologically isomorphic, if 

(i)  There exists a linear operator T:N→N
1
 having the inverse T

-1 
 

(ii) T establishes the isomorphism of N and N
1
 

(iii) T and T
-1

 are continuous in their respective domains. 

Theorem 

       Let N and N
1
 be normed linear space and Let T be linear transformation of  N into N

1.
 If 

T(N) is the range of T, Then the inverse T
-1

 exists and is bounded (continuous) in its domain 

of definition if and only if there exists a constan m>0 such that m 𝒙 ≤  𝑻(𝒙)  for all 

x∈ 𝑁 

Theorem 

            Let N and N
1
 be normed linear space. The N and N

1
 are topologically isomorphic if 

and only if there exist a linear operator T on N onto N
1
 and positive constants m and M such 

that                       m 𝒙 ≤  𝑻(𝒙)  ≤ 𝐌 𝒙  for all x∈ 𝑵 

---------------------------------------------------------------------------------------------------------------------------------- 

                                                          

                              

                                                    FUNCTIONAL ANALYSIS TEST – 1    

1. If f and g are real or complex valued integrable function defined on [a,b], Then Minkowsk’s   

inequality is 

       (a)  [  𝑓 𝑥 + 𝑔 𝑥  
𝑏

𝑎
dx]𝑝𝑑𝑥 ≤ [  𝑓 𝑥  𝑝𝑑𝑥]

1

𝑝
𝑏

𝑎
+ [  𝑔(𝑥) 𝑞𝑑𝑥]

1

𝑞
𝑏

𝑎
  where p< 1 

(b)  [  𝑓 𝑥 + 𝑔 𝑥  
𝑏

𝑎
dx]𝑝𝑑𝑥 ≤ [  𝑓 𝑥  𝑑𝑥]

𝑏

𝑎
+ [  𝑔(𝑥) 𝑑𝑥]

𝑏

𝑎
 wherep≥ 1 

(c)  [  𝑓 𝑥 + 𝑔 𝑥  
𝑏

𝑎
dx]𝑝𝑑𝑥 ≤ [  𝑓 𝑥  𝑝𝑑𝑥]

1

𝑝
𝑏

𝑎
+ [  𝑔(𝑥) 𝑝𝑑𝑥]

1

𝑝
𝑏

𝑎
  where p≥ 1 

(d)  [  𝑓 𝑥 + 𝑔 𝑥  
𝑏

𝑎
dx]𝑝𝑑𝑥 > [  𝑓 𝑥  𝑝𝑑𝑥]

1

𝑝
𝑏

𝑎
+ [  𝑔(𝑥) 𝑞𝑑𝑥]

1

𝑞
𝑏

𝑎
  where p≥ 1 

2. If N be a complex or real linear space a norm on N is a function ,Then 



   (a)    𝑥 + 𝑦 ≤  𝑥 +  𝑦                                     (b)  𝑥 + 𝑦 >  𝑥 +  𝑦    

   (c)  𝑥 + 𝑦 +  𝑦                                                   (d)  𝑥 + 𝑦 ≤  𝑥  

3. Let N be a normed linear space, For every x,y ∈ 𝑁  

   (a)  𝑥 −  𝑦  ≤  𝑥 − 𝑦                                    (b)       𝑥 −  𝑦  >  𝑥 −  𝑦       

   (c)  𝑥 − 𝑦 =  𝑥 −  𝑦                                       (d)   𝑥 −  𝑦   = 0 

4. If every Cauchy sequence in N converges to an element of a normed linear space  N, then N is 

      (a) Banach space                (b) complete                   (c) Hilbert space                  (d)Metric space 

5. 𝑙𝑛 𝑝 is 

(a) Not Banach space        (b) Linear space                (c) Banach space              (d) None of these 

6.  In a Banach space xn→ x,  yn→ y implies that xn+yn → 

(a) x+y                              (b) 
𝑥

𝑦
                                   (c) x-y                                  (d) xy 

7. If N be a Normed linear space and  𝑥 = 0 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 

   (a) x= 0                              (b) x is a real                       (c) x≠ 0                             (d) x>0              

8. Every Cauchy sequence in a normed linear space is    

  (a) not converges                                                    (b) absolutely convergent   

 (c) bounded.                                                           (d)neither convergent nor divergent 

9. A normed linear space N is complete if and only if every absolutely convergent series is, 

   (a) not converges                                                   (b) convergent   

   (c) divergent                                                          (d)neither convergent nor divergent 

10. A subspace M of a Banach space B is complete if and only if M is 

(a)    bounded                          (b) Unbounded                 (c) Closed in B                  (d) Open in B 

11. If M is a closed linear subspace of a normed linear space N, Then quotian   

    space 
𝑁

𝑀
 is a normed linear space with norm 

      (a)  𝑥 + 𝑀  = sup{  𝑥 + 𝑚  /m𝜖M }                  (b)  𝑥 + 𝑀  = inf{  𝑥  /x𝜖N }.                                            

     (c)  𝑥 + 𝑀  = inf{  𝑥 + 𝑚  /m𝜖M }                   (d)  𝑥 + 𝑀  = inf{  𝑚  /m𝜖M }. 

12. Let M be a closed subspace of a normed linear space N, For each x𝜖N, 

        let  𝑥 + 𝑀  = inf{  𝑥 + 𝑚  /m𝜖M }  then resfective to this norm 

(a)   N+M is a normed linear space                           (b)NM is a normed linear space    

   (c)     
𝑁

𝑀
  is a normed linear space                           (d) N - M is a normed linear space    

13. A complete normed linear space is  

(a) Hilbert space                 (b) Banach space            (c) Vector space             (d) None of these 



14. M is a closed linear subspace of the a normed linear space N. If N is a Banach space then the 

following is also a Banach space. 

(a) NM                              (b) N+M                        (c) N-M                            (d) 
𝑁

𝑀
 

15. If p> 1 and q is defined by 
1

𝑝
+

1

𝑞
= 1 and for f and g two complex valued measurable function 

such that f∈ 𝐿𝑝 𝑥 , 𝑔 ∈ 𝐿𝑞 𝑥 , then the Holder’s inequality is 

(a)   𝑓𝑔 
𝑥

dx≤  𝑓 𝑝 𝑔 𝑞                                    (b)      𝑓𝑔𝑑𝑥
𝑥

 ≤  𝑓 𝑝 𝑔 𝑞     

  (c)   𝑓𝑔 
𝑥

dx ≥  𝑓 𝑝 𝑔 𝑞                                 (d)       𝑓𝑔𝑑𝑥
𝑥

 ≥  𝑓 𝑝 𝑔 𝑞     

16. Let M be a subspace of a normed linear space N. The set of all cosets {x+M/ x∈ 𝑁 } is a normed 

space in the quotient form if 

(a) M is an open subspace of N                                   (b) M = N   

 (c) M is a closed subspace of N                                 (d) M is finite subspace os N 

17. Let ( 𝑥1, 𝑥2, 𝑥3, … … , 𝑥𝑛) ∈ 𝑅𝑛  .  𝑥  = (   𝑥𝑖  
𝑝)𝑛

𝑖=1

1

𝑝  does not define a norm when  

(a) P = 100                                       (b) p = 
3

2
                       (c) p= 1                     (d) p = 

1

2
 

18. Holder’s inequality      𝑥𝑖𝑦𝑖 
𝑛
𝑖=1 ≤ [  𝑥𝑖 

𝑝]𝑛
𝑖=1

1

𝑝 [  𝑦𝑖 
𝑞 ]𝑛

𝑖=1

1

𝑞     for p,q such that ,  

     (a)      p> 1and 𝑝 + 𝑞 = 1                                                (b) p> 1and 
1

𝑝
−

1

𝑞
= 1   

    (c) p> 1and 
1

𝑝
+

1

𝑞
= 0                                                      (d)   p> 1and 

1

𝑝
+

1

𝑞
= 1 

19. If 1≤P1<P2<∞,then 

(a)   𝑙𝑝1
⊂ 𝑙𝑝2

 and  𝑥 𝑝2
≥  𝑥 𝑝1

                                  (b) 𝑙𝑝1
 ⊃ 𝑙𝑝2

 and  𝑥 𝑝2
≤  𝑥 𝑝1

 

      (c) 𝑙𝑝1
⊂ 𝑙𝑝2

 and  𝑥 𝑝2
≤  𝑥 𝑝1

                                  (d) 𝑙𝑝1
⊃ 𝑙𝑝2

 and  𝑥 𝑝2
≥  𝑥 𝑝1

 

20. . The linear space 𝑙∞  of all bounded sequence x = {xn} is Banach space with the Norm. 

      (a)  𝑥  = Max {  𝑥1 ,  𝑥2 ,  𝑥3 , …     ,  𝑥𝑛  }                              (b)   𝑥  = sup1≤𝑛<∞ 𝑥𝑛    

      (c)   𝑥  = [  𝑥𝑖 
𝑝]𝑛

𝑖=1

1

𝑝                                                               (d)     None of these     

 

******************************************************************************************** 




