TRB MATHEMATICS

FUNTIONAL ANALYSIS

'Material Available with Question papers'

CLASS -I

Holder's inequality

If $\mathrm{p}>1$ and $\frac{1}{p}+\frac{1}{q}=1$,then $\quad \sum_{i=1}^{n}\left|x_{i} y_{i}\right| \leq\left[\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right]^{\frac{1}{p}}\left[\sum_{i=1}^{n}\left|y_{i}\right|^{q}\right]^{\frac{1}{q}} \quad$ OR

$$
\sum_{i=1}^{n}\left|x_{i} y_{i}\right| \leq\left[\sum_{i=1}^{n}\left|x_{i}\right|\right] \quad\left[\sum_{i=1}^{n}\left|y_{i}\right|\right]
$$

Holder's inequality For intgrable function

$$
\int_{a}^{b}|f(x) g(x)| \mathrm{dx} \leq\left[\int_{a}^{b}|f(x)|^{p} d x\right]^{\frac{1}{p}}\left[\int_{a}^{b}|g(x)|^{q} d x\right]^{\frac{1}{q}}
$$

put $p=q=2$, then,
$\sum_{i=1}^{n}\left|x_{i} y_{i}\right| \leq\left[\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right]^{\frac{1}{2}}\left[\sum_{i=1}^{n}\left|y_{i}\right|^{2}\right]^{\frac{1}{2}}$ or
$\left[\sum_{i=1}^{n}\left|x_{i} y_{i}\right|\right]^{2} \leq\left[\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right] \quad\left[\sum_{i=1}^{n}\left|y_{i}\right|^{2}\right]$
This is known as cauchy's inequality

Minkowsk's inequality

$>$ If $\mathrm{p} \geq 1$,then $\quad\left[\sum_{i=1}^{n}\left|x_{i}+y_{i}\right|^{p}\right]^{\frac{1}{p}} \leq\left[\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right]^{\frac{1}{p}}+\left[\sum_{i=1}^{n}\left|y_{i}\right|^{p}\right]^{\frac{1}{p}}$
$>$ If f and g are real or complex valued integrable function defined on $[\mathrm{a}, \mathrm{b}]$, Then

$$
\left[\int_{a}^{b}|f(x)+g(x)| \mathrm{dx}\right]^{p} d x \leq\left[\int_{a}^{b}|f(x)|^{p} d x\right]^{\frac{1}{p}}+\left[\int_{a}^{b}|g(x)|^{q} d x\right]^{\frac{1}{a}} \text { where } \mathrm{p} \geq 1
$$

Metric space

Let X be a non-empty set. A metric on X is a real valued function $\mathrm{X} \times X$ satisfying the following Three conditions,

For every $\mathrm{x}, \mathrm{y} \in X$ and $x \neq y$

1. $\mathrm{d}(\mathrm{x}, \mathrm{y}) \geq 0$ and $\mathrm{d}(\mathrm{x}, \mathrm{y})=0$ if and only if $\mathrm{x}=\mathrm{y}$
2. $\mathrm{d}(\mathrm{x}, \mathrm{y})=\mathrm{d}(\mathrm{y}, \mathrm{x})$ for every $\mathrm{x}, \mathrm{y} \in X$
3. $\mathrm{d}(\mathrm{x}, \mathrm{y}) \leq \mathrm{d}(\mathrm{x}, \mathrm{z})+\mathrm{d}(\mathrm{z}, \mathrm{y})$ for any $\mathrm{x}, \mathrm{y}, \mathrm{z} \in X$
$\mathrm{d}(\mathrm{x}, \mathrm{y})$ is called the distance between x and y , it is finite non-negative real number.

Normed linear spaces

Let N be a complex or real linear space a norm on N is a function such that (\| \|: $N \rightarrow R$)
i. $\quad\|x\| \geq 0$ and $\|x\|=0 \Leftrightarrow \mathrm{x}=0$
ii. $\quad\|x+y\| \leq\|x\|+\|y\|$
iii. $\quad\|a x\|=|a|\|x\|$ for all $\mathrm{x}, \mathrm{y} \in N$ and $\mathrm{a} \in \mathrm{c}$ or R

N is called a normed linear space.

Definition

Let N be a normed linear space, a sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ in N is said to converge to an element x in N if given $\varepsilon>0$,there exists a positive integer n_{0} such that
$\left\|x_{n}-x\right\|<\varepsilon$ for all $\mathrm{n} \geq \mathrm{n}_{0}$
It is denoted by $\lim _{x \rightarrow \infty} x_{n}=x$
$\mathrm{xn} \rightarrow x$ iff $\left\|x_{n}-x\right\| \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$

Theorems

$>$ A normed linear space N is a matric space with respect to the metric d defined by $\mathrm{D}(\mathrm{x}, \mathrm{y})=\|x-y\|$ for all $\mathrm{x}, \mathrm{y} \in N$
$>$ If N is a normed linear space, Then

- $|\|x\|+\|y\|| \leq\|x\|+\|y\|$
- $\|\|x\|-\| y\|\|\leq\| x-y\|$
$>$ If N is a normed linear space, Then the norm $\|\quad\|: N \rightarrow R$ is continuous on N .
$>$ The operation of addition and scalar multiplication in N are jointly continuous.

$$
\text { If } \mathrm{x}_{\mathrm{n}} \rightarrow \mathrm{x}, \mathrm{y}_{\mathrm{n}} \rightarrow y \text { and } \mathrm{a}_{\mathrm{n}} \rightarrow a \text {, Then } \mathrm{x}_{\mathrm{n}}+\mathrm{y}_{\mathrm{n}} \rightarrow \mathrm{x}+\mathrm{y}, \mathrm{a}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}} \rightarrow \mathrm{ax}
$$

$>$ Let N be a normed linear space and M be a subspace of N , then the closure \bar{M} of M is also a subspace of N

- A subset M in a normed linear space N is bounded if and only if there is a positive constant C such that $\|x\| \leq C$ for all $\mathrm{x} \epsilon M$

Cauchy sequence

A sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ in N is called a Cauchy sequence in N ,If given $\varepsilon \geq 0$ there exists a positive integer n_{0} such that $\left\|x_{n}-x_{m}\right\|<\varepsilon$ for all $\mathrm{m}, \mathrm{n} \geq \mathrm{n}_{0}$

If $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ is a Cauchy sequence in N ,Then $\left\|x_{n}-x_{m}\right\| \rightarrow 0$ as $\mathrm{m}, \mathrm{n} \rightarrow \infty$

Properties of a Cauchy sequence

i. If N is normed linear space ,then every convergent sequence is a Cauchy sequence.

It's converse is not true
ii. Every Cauchy sequence in a normed linear space is bounded.

Complete

A normed linear space N is said to be complete if every Cauchy sequence in N converges to an element of N .
\Rightarrow If $\left\|x_{n}-x_{m}\right\| \rightarrow 0$ as, $\mathrm{n} \rightarrow \infty$, then there exists $\mathrm{x} \in N$ such that

$$
\left\|x_{n}-x \quad\right\| \rightarrow 0 \text { as, } \mathrm{n} \rightarrow \infty,
$$

Banach space

A complete normed linear space is called a Banach space.
$>$ Every complete subspace M of a normed linear space is closed

Convergent of series

A series $\sum_{n=1}^{\infty} x_{n}, \mathrm{x}_{\mathrm{n}} \epsilon N$ is said to be convergent to $\mathbf{x} \epsilon N$, If the sequence of partial sums $\left\{\mathrm{s}_{\mathrm{n}}\right\}$ converges to x in N .

A series $\sum_{n=1}^{\infty} x_{n}$ is said to be absolutely convergent if $\sum_{n=1}^{\infty}\left\|x_{n}\right\|$ is convergent.

Theorem

A normed linear space N is complete if and only if every absolutely convergent series is convergent.

Example of Banach spaces.

1. The real linear space R and the complex linear space C are normed linear space under the norm $\|x\|=|x|$ for all $\mathrm{x} \in R$ (or) C R and C are complete $\Rightarrow \mathrm{R}$ and C are Banach spaces.
2. The linear space R^{n} or C^{n} are Banach space with Norm, $\|x\|=\left[\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right]^{\frac{1}{2}}$
3. (i) R^{n} or C^{n} are Banach space with Norm, $\|x\|=\left[\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right]^{\frac{1}{p}}, 1 \leq p \leq \infty$

Which is denited by $l_{p}{ }^{n}$
(ii) $\|x\|=\operatorname{Max}\left\{\left|x_{1}\right|,\left|x_{2}\right|,\left|x_{3}\right|, \ldots \quad,\left|x_{n}\right|\right\}$, which is denoted by l_{∞}^{n}
4. The linear space C of all convergent sequence $x=\left\{x_{n}\right\}$ with the Norm.
$\|x\|=\sup _{1 \leq n \leq \infty}\left|x_{n}\right|$ is a Banach space denoted by C
5. The linear space l_{∞} of all bounded sequence $x=\left\{x_{n}\right\}$ with the Norm.

$$
\|x\|=\sup _{1 \leq n \leq \infty}\left|x_{n}\right| \text { is a Banach space. }
$$

6. The linear space $l_{p}, \mathrm{p}>1$ of all sequences $\left[\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}\right]<\infty$ with norm $\|x\|=\left[\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right]^{\frac{1}{p}}$ is a Banach space, It is denoted by $\left\|\|_{p}\right.$
7. If $[a, b]$ is a bounded and closed interval, The linear space $C[a, b]$ of all continuous functions defined on $[a, b]$ is a Banach space with the norm,

$$
\|f\|=\operatorname{Sup}\{|f(x)| / \mathrm{x} \epsilon[\mathrm{a} \cdot \mathrm{~b}]\}
$$

8. Let $\mathrm{C}(\mathrm{x})$ be the set of all continuous real valued function on a compact metric space X, then $C(X)$ is a Banach space with the norm
$\|f\|=\operatorname{Sup}\{|f(x)| / \mathrm{x} \in \mathrm{X}]$

Separable

A normed linear space N is said to be separable if it has a countable dense subset. ie., There is a countable subset D in N such that $\bar{D}=N$

Example

1. Every subset of a separable normal linear space is separable
2. The normed linear space $l_{p}, 1 \leq p \leq \infty$ are separable
3. The space l_{∞} is not separable

Quatient space

Let N be a normed linear space and M be a subspace of N , Then $\frac{N}{M}=\{x+M / x \in \mathrm{~N}\}$ is called Quotient space.

It is denoted by $\mathrm{Q}(\mathrm{x})$
$\mathrm{Q}(\mathrm{x})$ is called canonical(Natural) mapping of L onto $\frac{N}{M}$

Theorem:

If M is a closed linear subspace of a normed linear space N , Then quotian space $\frac{N}{M}$ is a normed linear space with norm of each cosert $\mathrm{x}+\mathrm{M}$ defined as

$$
\|x+M\|=\inf \{\|x+m\| / m \in \mathrm{M}\}
$$

If N is Banach space, then the quotient space $\frac{N}{M}$ is also a Banach space with above norm

Direct sum of subspace

Let M and N are subspace of Banach space B , If every element z on B is represented uniquely in the form $z=x+y, x \in M, y \in N$, Then B is said to be direct sum of N, M

It is denoted by $\mathrm{B}=\mathrm{M} \oplus \mathrm{N}$

Theorem

Let a Banach Space $\mathrm{B}=\mathrm{M} \oplus \mathrm{N}$ and $\mathrm{z} \in \mathrm{B}$ be $\mathrm{z}=\mathrm{x}+\mathrm{y}$ uniquely with $\mathrm{x} \in \mathrm{M}, \mathrm{y} \in \mathrm{N}$, then $\|z\|_{1}=\|x\|+\|y\|$ is a normal on direct sum $\mathrm{B}=\mathrm{M} \oplus \mathrm{N}$

If B1 is the direct sum space with this new norm, then B1 is a Banach space if M and N are closed.

Continuous linear Transformation

$T: N \rightarrow N^{1}$ is continuous if and only if $x_{n} \rightarrow x$ in N implies $T\left(x_{n}\right) \rightarrow T(x)$ in N^{1}

1. Zero Transformation is denoted by 0
2.Identity Transformation is denoted by I

Theorem

If T is continuous at the origin, Then it is continuous everywhere and the continutity is uniform.

Bounded linear transformation

A linear transformation $\quad \mathrm{T}: \mathrm{N} \rightarrow \mathrm{N}^{1}$ is said to be bounded linear transformation if there exists a positive constant M such that $\|T(x)\| \leq \mathrm{M}\|x\|$ for all $\mathrm{x} \in \mathrm{N}$.

Theorem

1. $\mathrm{T}: \mathrm{N} \rightarrow \mathrm{N}^{1}$ is bounded if and only if T is continuous.
2. Let $\mathrm{T}: \mathrm{N} \rightarrow \mathrm{N}^{1}$ be a linear transformation, Then T is bounded if and only if T maps bounded sets in N into bounded set in N^{1}

Bound of T

Let T be a bounded linear transformation of N into N^{1}, Then the norm,
$\|T(x)\|=\inf \{\mathrm{M} /\|T(x)\| \leq \mathrm{M}\|x\|$ for all $\mathrm{x} \epsilon \mathrm{N}\}$ is called the bound of T (OR)
$\|T\|=\sup \left\{\frac{\|T(x)\|}{\|x\|} / \mathrm{x} \in \mathrm{N}\right.$ and $\left.\mathrm{x} \neq 0\right\}$

Theorem

If N and N^{1} are normed linear space and $\mathrm{T}: \mathrm{N} \rightarrow \mathrm{N}^{1}$, Then the following are equivalent
(a) $\|T\|=\sup \left\{\frac{\|T(x)\|}{\|x\|} / \mathrm{x} \in \mathrm{N}\right.$ and $\left.\mathrm{x} \neq 0\right\}$
(b) $\|T\|=\sup \{\|T(x)\| / \mathrm{x} \in \mathrm{N}$ and $\|T\| \leq 1\}$
(c) $\|T\|=\sup \{\|T(x)\| / \mathrm{x} \in \mathrm{N}$ and $\|T\|=1\}$

$\mathbf{B}\left(\mathbf{N}, \mathbf{N}^{1}\right)$

The set of all bounded linear transformation of normed space N into N^{1} is denoted by $B\left(N, N^{1}\right)$

Theorem

$>\mathrm{B}\left(\mathrm{N}, \mathrm{N}^{1}\right)$ is a normed linear space with linear operation
(i) $\quad\left(\mathrm{T}_{1}+\mathrm{T}_{2}\right)(\mathrm{x})=\mathrm{T}_{1}(\mathrm{x})+\mathrm{T}_{2}(\mathrm{x})$,
(ii) (aT) $\mathrm{x}=\mathrm{aT}(\mathrm{x})$ and norm defined by $\|T\|=\sup \left\{\frac{\|T(x)\|}{\|x\|} / \mathrm{x} \in \mathrm{N}\right.$ and $\left.\mathrm{x} \neq 0\right\}$

If N^{1} is a Banach space, then $\mathrm{B}\left(\mathrm{N}, \mathrm{N}^{1}\right)$ is also Banach space.

1. If $\mathrm{T}_{1}, \mathrm{~T}_{2} \in \mathrm{~B}\left(\mathrm{~N}, \mathrm{~N}^{1}\right)$, the
$\left\|T_{1} T_{2}\right\| \leq\left\|T_{1}\right\|\left\|T_{2}\right\|$
2. If $\mathrm{T}_{\mathrm{n}} \rightarrow \mathrm{T}$ and $\mathrm{T}_{\mathrm{n}}{ }^{1} \rightarrow \mathrm{~T}^{1}$, Then $\mathrm{T}_{\mathrm{n}} \mathrm{T}_{\mathrm{n}}{ }^{1} \rightarrow \mathrm{TT}^{1}$ as $\mathrm{n} \rightarrow \infty$ which implies that the multiplication is jointly continuous.

Theorem

$>$ Let M be a closed subspace of a normed linear space and T be the natural mapping of N onto the quotient space $\frac{N}{M}$ defined by $\mathrm{T}(\mathrm{x})=\mathrm{x}+\mathrm{M}$, Then T is bounded linear transformation with $\|T\| \leq 1$

- Let N and N^{1} be normed linear space and let $\mathrm{T}: \mathrm{N} \rightarrow \mathrm{N}^{1}$ be a bounded linear transformation of N into N^{1}, If M is the kernel of T, then
i) M is closed subspace of N
ii) T induces a natural transformation T^{1} of N / M onto N^{1} such that $\left\|T^{1}\right\|=\|T\|$

Definition

Let N and N^{1} be normed linear space, an isometric isomorphism of N into N^{1} is a oneone linear transformation T of N into N^{1} such that $\|T(x)\|=\|x\|$ for all $\mathrm{x} \in N$

For any $\mathrm{x}, \mathrm{y} \in N \Rightarrow\|T(x)-T(y)\|=\|T(x-y)\|=\|x-y\|$

Definition

Topologically isomorphic

Two normed linear space N and N^{1} are said to be topologically isomorphic, if
(i) There exists a linear operator $\mathrm{T}: \mathrm{N} \rightarrow \mathrm{N}^{1}$ having the inverse T^{-1}
(ii) T establishes the isomorphism of N and N^{1}
(iii) $\quad \mathrm{T}$ and T^{-1} are continuous in their respective domains.

Theorem

Let N and N^{1} be normed linear space and Let T be linear transformation of N into $\mathrm{N}^{1 .}$ If $\mathrm{T}(\mathrm{N})$ is the range of T , Then the inverse T^{-1} exists and is bounded (continuous) in its domain of definition if and only if there exists a constan m>0 such that $\mathbf{m}\|\boldsymbol{x}\| \leq\|\boldsymbol{T}(\boldsymbol{x})\|$ for all $\mathrm{x} \in N$

Theorem

Let N and N^{1} be normed linear space. The N and N^{1} are topologically isomorphic if and only if there exist a linear operator T on N onto N^{1} and positive constants m and M such that

$$
\mathbf{m}\|x\| \leq\|T(x)\| \leq M\|x\| \text { for all } x \in N
$$

FUNCTIONAL ANALYSIS TEST - 1

1. If f and g are real or complex valued integrable function defined on $[a, b]$, Then Minkowsk's inequality is
(a) $\left[\int_{a}^{b}|f(x)+g(x)| \mathrm{dx}\right]^{p} d x \leq\left[\int_{a}^{b}|f(x)|^{p} d x\right]^{\frac{1}{p}}+\left[\int_{a}^{b}|g(x)|^{q} d x\right]^{\frac{1}{q}}$ where $\mathrm{p}<1$
(b) $\left[\int_{a}^{b}|f(x)+g(x)| \mathrm{dx}\right]^{p} d x \leq\left[\int_{a}^{b}|f(x)| d x\right]+\left[\int_{a}^{b}|g(x)| d x\right] \quad$ wherep ≥ 1
(c) $\left[\int_{a}^{b}|f(x)+g(x)| \mathrm{dx}\right]^{p} d x \leq\left[\int_{a}^{b}|f(x)|^{p} d x\right]^{\frac{1}{p}}+\left[\int_{a}^{b}|g(x)|^{p} d x\right]^{\frac{1}{p}}$ where $\mathrm{p} \geq 1$
(d) $\left[\int_{a}^{b}|f(x)+g(x)| \mathrm{dx}\right]^{p} d x>\left[\int_{a}^{b}|f(x)|^{p} d x\right]^{\frac{1}{p}}+\left[\int_{a}^{b}|g(x)|^{q} d x\right]^{\frac{1}{q}}$ where $\mathrm{p} \geq 1$
2. If N be a complex or real linear space a norm on N is a function, Then
(a) $\|x+y\| \leq\|x\|+\|y\|$
(b) $\|x+y\|>\|x\|+\|y\|$
(c) $\|x+y\|+\|y\|$
(d) $\|x+y\| \leq\|x\|$
3. Let N be a normed linear space, For every $\mathrm{x}, \mathrm{y} \in N$
(a) $\|x\|-\|y\| \mid \leq\|x-y\|$
(b) $\quad \mid\|x\|-\|y\|\|>\| x\|-\| y \|$
(c) $\|x-y\|=|\|x\|-\|y\||$
(d) $|\|x\|-\|y\||=0$
4. If every Cauchy sequence in N converges to an element of a normed linear space N , then N is
(a) Banach space
(b) complete
(c) Hilbert space
(d)Metric space
5. $l^{n}{ }_{p}$ is
(a) Not Banach space
(b) Linear space
(c) Banach space
(d) None of these
6. In a Banach space $x_{n} \rightarrow x, y_{n} \rightarrow y$ implies that $x_{n}+y_{n} \rightarrow$
(a) $x+y$
(b) $\frac{x}{y}$
(c) $x-y$
(d) $x y$
7. If N be a Normed linear space and $\|x\|=0$ if and only if
(a) $\mathrm{x}=0$
(b) x is a real
(c) $x \neq 0$
(d) $\mathrm{x}>0$
8. Every Cauchy sequence in a normed linear space is
(a) not converges
(b) absolutely convergent
(c) bounded.
(d)neither convergent nor divergent
9. A normed linear space N is complete if and only if every absolutely convergent series is,
(a) not converges
(b) convergent
(c) divergent
(d)neither convergent nor divergent
10. A subspace M of a Banach space B is complete if and only if M is
(a) bounded
(b) Unbounded
(c) Closed in B
(d) Open in B
11. If M is a closed linear subspace of a normed linear space N , Then quotian space $\frac{N}{M}$ is a normed linear space with norm
(a) $\|x+M\|=\sup \{\|x+m\| / m \in \mathrm{M}\}$
(b) $\|x+M\|=\inf \{\|x\| / x \in \mathrm{~N}\}$.
(c) $\|x+M\|=\inf \{\|x+m\| / m \in \mathrm{M}\}$
(d) $\|x+M\|=\inf \{\|m\| / m \in \mathrm{M}\}$.
12. Let M be a closed subspace of a normed linear space N, For each $x \in N$,
let $\|x+M\|=\inf \{\|x+m\| / m \in \mathrm{M}\}$ then resfective to this norm
(a) $\mathrm{N}+\mathrm{M}$ is a normed linear space
(b)NM is a normed linear space
(c) $\frac{N}{M}$ is a normed linear space
(d) $\mathrm{N}-\mathrm{M}$ is a normed linear space
13. A complete normed linear space is
(a) Hilbert space
(b) Banach space
(c) Vector space
(d) None of these
14. M is a closed linear subspace of the a normed linear space N . If N is a Banach space then the following is also a Banach space.
(a) NM
(b) $\mathrm{N}+\mathrm{M}$
(c) $\mathrm{N}-\mathrm{M}$
(d) $\frac{N}{M}$
15. If $\mathrm{p}>1$ and q is defined by $\frac{1}{p}+\frac{1}{q}=1$ and for f and g two complex valued measurable function such that $\mathrm{f} \in L_{p}(x), g \in L_{q}(x)$, then the Holder's inequality is
(a) $\int_{x}|f g| \mathrm{dx} \leq\|f\|_{p}\|g\|_{q}$
(b) $\left|\int_{x} f g d x\right| \leq\|f\|_{p}\|g\|_{q}$
(c) $\int_{x}|f g| \mathrm{dx} \geq\|f\|_{p}\|g\|_{q}$
(d) $\left|\int_{x} f g d x\right| \geq\|f\|_{p}\|g\|_{q}$
16. Let M be a subspace of a normed linear space N. The set of all cosets $\{x+M / x \in N\}$ is a normed space in the quotient form if
(a) M is an open subspace of N
(b) $\mathrm{M}=\mathrm{N}$
(c) M is a closed subspace of N
(d) M is finite subspace os N
17. Let $\left(x_{1}, x_{2}, x_{3}, \ldots \ldots, x_{n}\right) \in R^{n} .\|x\|=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}$ does not define a norm when
(a) $\mathrm{P}=100$
(b) $\mathrm{p}=\frac{3}{2}$
(c) $\mathrm{p}=1$
(d) $p=\frac{1}{2}$
18. Holder's inequality $\sum_{i=1}^{n}\left|x_{i} y_{i}\right| \leq\left[\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right]^{\frac{1}{p}}\left[\sum_{i=1}^{n}\left|y_{i}\right|^{q}\right]^{\frac{1}{q}} \quad$ for p, q such that ,
(a) $\mathrm{p}>1$ and $p+q=1$
(b) $\mathrm{p}>1$ and $\frac{1}{p}-\frac{1}{q}=1$
(c) $\mathrm{p}>1$ and $\frac{1}{p}+\frac{1}{q}=0$
(d) $\mathrm{p}>1$ and $\frac{1}{p}+\frac{1}{q}=1$
19. If $1 \leq \mathrm{P}_{1}<\mathrm{P}_{2}<\infty$, then
(a) $l_{p_{1}} \subset l_{p_{2}}$ and $\|x\|_{p_{2}} \geq\|x\|_{p_{1}}$
(b) $l_{p_{1}} \supset l_{p_{2}}$ and $\|x\|_{p_{2}} \leq\|x\|_{p_{1}}$
(c) $l_{p_{1}} \subset l_{p_{2}}$ and $\|x\|_{p_{2}} \leq\|x\|_{p_{1}}$
(d) $l_{p_{1}} \supset l_{p_{2}}$ and $\|x\|_{p_{2}} \geq\|x\|_{p_{1}}$
20.. The linear space l_{∞} of all bounded sequence $\mathrm{x}=\left\{\mathrm{x}_{\mathrm{n}}\right\}$ is Banach space with the Norm.
(a) $\|x\|=\operatorname{Max}\left\{\left|x_{1}\right|,\left|x_{2}\right|,\left|x_{3}\right|, \ldots \quad,\left|x_{n}\right|\right\}$
(b) $\|x\|=\sup _{1 \leq n<\infty}\left|x_{n}\right|$
(c) $\|x\|=\left[\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right]^{\frac{1}{p}}$
(d) None of these
