TRB MATHEMATICS

FUNTIONAL ANALYSIS

'Material Available with Question papers'

CLASS -I

Holder's inequality

If p> 1and
$$\frac{1}{p} + \frac{1}{q} = 1$$
, then $\sum_{i=1}^{n} |x_i y_i| \le \left[\sum_{i=1}^{n} |x_i|^p\right]^{\frac{1}{p}} \left[\sum_{i=1}^{n} |y_i|^q\right]^{\frac{1}{q}}$ OR
 $\sum_{i=1}^{n} |x_i y_i| \le \left[\sum_{i=1}^{n} |x_i|\right] \quad \left[\sum_{i=1}^{n} |y_i|\right]$

Holder's inequality For intgrable function

$$\int_{a}^{b} |f(x)g(x)| dx \le \left[\int_{a}^{b} |f(x)|^{p} dx\right]^{\frac{1}{p}} \left[\int_{a}^{b} |g(x)|^{q} dx\right]^{\frac{1}{q}}$$

put p = q = 2, then,

$$\sum_{i=1}^{n} |x_i y_i| \le \left[\sum_{i=1}^{n} |x_i|^2\right]^{\frac{1}{2}} \left[\sum_{i=1}^{n} |y_i|^2\right]^{\frac{1}{2}}$$
 or

 $\left[\sum_{i=1}^{n} |x_i y_i|\right]^2 \le \left[\sum_{i=1}^{n} |x_i|^2\right] \quad \left[\sum_{i=1}^{n} |y_i|^2\right]$

This is known as cauchy's inequality

Minkowsk's inequality

➤ If p≥1,then
$$[\sum_{i=1}^{n} |x_i + y_i|^p]^{\frac{1}{p}} \le [\sum_{i=1}^{n} |x_i|^p]^{\frac{1}{p}} + [\sum_{i=1}^{n} |y_i|^p]^{\frac{1}{p}}$$

➤ If f and g are real or complex valued integrable function defined on [a,b], Then

$$\left[\int_{a}^{b} |f(x) + g(x)| \, \mathrm{d}x\right]^{p} dx \le \left[\int_{a}^{b} |f(x)|^{p} \, \mathrm{d}x\right]^{\frac{1}{p}} + \left[\int_{a}^{b} |g(x)|^{q} \, \mathrm{d}x\right]^{\frac{1}{q}} \text{ where } p \ge 1$$

Metric space

Let X be a non-empty set. A metric on X is a real valued function $X \times X$ satisfying the following Three conditions,

For every $x, y \in X$ and $x \neq y$

- 1. $d(x,y) \ge 0$ and d(x,y) = 0 if and only if x = y
- 2. d(x,y) = d(y,x) for every $x,y \in X$
- 3. d(x, y) ≤d(x, z) + d(z,y) for any x,y,z ∈ X
 d(x,y) is called the distance between x and y ,it is finite non-negative real number.

Normed linear spaces

Let N be a complex or real linear space a norm on N is a function such that

- $(\| \quad \|: N \to R \)$
- i. $||x|| \ge 0$ and $||x|| = 0 \Leftrightarrow x = 0$

ii. $||x + y|| \le ||x|| + ||y||$

iii. ||ax|| = |a|||x|| for all x, y $\in N$ and a $\in c$ or R

N is called a normed linear space.

Definition

Let N be a normed linear space, a sequence $\{x_n\}$ in N is said to converge to an element x in N if given $\varepsilon > 0$, there exists a positive integer n_0 such that

 $||x_n - x|| < \varepsilon$ for all $n \ge n_0$

It is denoted by $\lim_{x\to\infty} x_n = x$

 $xn \rightarrow x \ iff ||x_n - x|| \rightarrow 0 \ as \ n \rightarrow \infty$

Theorems

> A normed linear space N is a matric space with respect to the metric d defined by

D(x,y) = ||x - y|| for all x,y ϵN

- ➢ If N is a normed linear space, Then
 - $|||x|| + ||y||| \le ||x|| + ||y||$
 - $|||x|| ||y||| \le ||x y||$
- ▶ If N is a normed linear space, Then the norm $\| \|: N \to R$ is continuous on N.
- > The operation of addition and scalar multiplication in N are jointly continuous.

If $x_n \rightarrow x$, $y_n \rightarrow y$ and $a_n \rightarrow a$, Then $x_n + y_n \rightarrow x + y$, $a_n x_n \rightarrow ax$

- > Let N be a normed linear space and M be a subspace of N, then the closure \overline{M} of M is also a subspace of N
- A subset M in a normed linear space N is bounded if and only if there is a positive constant C such that $||x|| \le C$ for all $x \in M$

Cauchy sequence

A sequence $\{x_n\}$ in N is called a Cauchy sequence in N, If given $\varepsilon \ge 0$ there exists a positive integer n_0 such that $||x_n - x_m|| < \varepsilon$ for all $m, n \ge n_0$

If $\{x_n\}$ is a Cauchy sequence in N, Then $||x_n - x_m|| \to 0$ as m, $n \to \infty$

Properties of a Cauchy sequence

i. If N is normed linear space ,then every convergent sequence is a Cauchy sequence.

It's converse is not true

ii. Every Cauchy sequence in a normed linear space is bounded.

Complete

A normed linear space N is said to be complete if every Cauchy sequence in N converges to an element of N.

 \Rightarrow If $||x_n - x_m|| \rightarrow 0$ as, $n \rightarrow \infty$, then there exists x ϵN such that

 $||x_n - x|| \to 0 \text{ as,} n \to \infty,$

Banach space

A complete normed linear space is called a Banach space.

Every complete subspace M of a normed linear space is closed

Convergent of series

A series $\sum_{n=1}^{\infty} x_n$, $x_n \in N$ is said to be **convergent to** $\mathbf{x} \in N$, If the sequence of partial sums $\{s_n\}$ converges to x in N.

A series $\sum_{n=1}^{\infty} x_n$ is said to be **absolutely convergent** if $\sum_{n=1}^{\infty} ||x_n||$ is convergent.

Theorem

A normed linear space N is complete if and only if every absolutely convergent series is convergent.

Example of Banach spaces.

1. The real linear space R and the complex linear space C are normed linear space under the norm ||x|| = |x| for all $x \in R$ (*or*)C

R and C are complete \Rightarrow R and C are Banach spaces.

- 2. The linear space Rⁿ or Cⁿ are Banach space with Norm, $||x|| = [\sum_{i=1}^{n} |x_i|^2]^{\frac{1}{2}}$
- 3. (i) Rⁿ or Cⁿ are Banach space with Norm, $||x|| = [\sum_{i=1}^{n} |x_i|^p]^{\frac{1}{p}}, 1 \le p \le \infty$ Which is denited by l_p^n
 - (ii) $||x|| = Max \{ |x_1|, |x_2|, |x_3|, ..., |x_n| \}$, which is denoted by l_{∞}^n

4. The linear space C of all convergent sequence $x = \{x_n\}$ with the Norm.

 $||x|| = \sup_{1 \le n \le \infty} |x_n|$ is a Banach space denoted by C

5. The linear space l_{∞} of all bounded sequence $x = \{x_n\}$ with the Norm.

 $||x|| = \sup_{1 \le n \le \infty} |x_n|$ is a Banach space.

6. The linear space l_p , p> 1 of all sequences $[\sum_{i=1}^{\infty} |x_i|^p] < \infty$ with norm

 $||x|| = [\sum_{i=1}^{n} |x_i|^p]^{\frac{1}{p}}$ is a Banach space, It is denoted by $|| ||_p$

7. If [a,b] is a bounded and closed interval, The linear space C[a,b] of all continuous functions defined on [a,b] is a Banach space with the norm,

 $||f|| = \sup\{|f(x)| / x\epsilon[a.b]\}$

8. Let C(x) be the set of all continuous real valued function on a compact metric space X, then C(X) is a Banach space with the norm

 $||f|| = \sup\{|f(x)| / x \in X\}$

Separable

A normed linear space N is said to be separable if it has a countable dense subset.

ie., There is a countable subset D in N such that $\overline{D} = N$

Example

- 1. Every subset of a separable normal linear space is separable
- 2. The normed linear space l_p , $1 \le p \le \infty$ are separable
- 3. The space l_{∞} is not separable

Quatient space

Let N be a normed linear space and M be a subspace of N, Then $\frac{N}{M} = \{x + M/x \in N\}$ is called Quotient space.

It is denoted by Q(x)

Q(x) is called canonical (Natural) mapping of L onto $\frac{N}{M}$

Theorem:

If M is a closed linear subspace of a normed linear space N, Then quotian space $\frac{N}{M}$ is a normed linear space with norm of each cosert x+M defined as

 $||x + M|| = \inf\{ ||x + m|| / m \in M \}.$

If N is Banach space, then the quotient space $\frac{N}{M}$ is also a Banach space with above norm

Direct sum of subspace

Let M and N are subspace of Banach space B, If every element z on B is represented uniquely in the form z = x+y, $x \in M$, $y \in N$. Then B is said to be direct sum of N,M

It is denoted by $B = M \bigoplus N$

Theorem

Let a Banach Space $B = M \bigoplus N$ and $z \in B$ be z = x+y uniquely with $x \in M, y \in N$, then

 $||z||_1 = ||x|| + ||y||$ is a normal on direct sum $B = M \bigoplus N$

If B1 is the direct sum space with this new norm, then B1 is a Banach space if M and N are closed.

Continuous linear Transformation

 $T:N \rightarrow N^1$ is continuous if and only if $x_n \rightarrow x$ in N implies $T(x_n) \rightarrow T(x)$ in N^1

1. Zero Transformation is denoted by 0

2.Identity Transformation is denoted by I

Theorem

If T is continuous at the origin, Then it is continuous everywhere and the continuity is uniform.

Bounded linear transformation

A linear transformation $T:N \rightarrow N^1$ is said to be bounded linear transformation if there exists a positive constant M such that $||T(x)|| \le M||x||$ for all $x \in N$.

Theorem

- 1. $T:N \rightarrow N^1$ is bounded if and only if T is continuous.
- 2. Let $T:N \rightarrow N^1$ be a linear transformation ,Then T is bounded if and only if T maps bounded sets in N into bounded set in N^1

Bound of T

Let T be a bounded linear transformation of N into N¹, Then the norm,

 $||T(x)|| = \inf\{M/||T(x)|| \le M||x||$ for all $x \in N\}$ is called the bound of T (OR)

 $||T|| = \sup\{\frac{||T(x)||}{||x||} / x \in \mathbb{N} \text{ and } x \neq 0 \}$

Theorem

If N and N¹ are normed linear space and T:N \rightarrow N¹, Then the following are equivalent

(a) $||T|| = \sup\{\frac{||T(x)||}{||x||} / x \in \mathbb{N} \text{ and } x \neq 0 \}$ (b) $||T|| = \sup\{||T(x)|| / x \in \mathbb{N} \text{ and } ||T|| \le 1 \}$ (c) $||T|| = \sup\{||T(x)|| / x \in \mathbb{N} \text{ and } ||T|| = 1\}$

B(N,N¹)

The set of all bounded linear transformation of normed space N into N^1 is denoted by $B(N,N^1)$

Theorem

➢ B(N,N¹) is a normed linear space with linear operation
 (i) (T₁+T₂)(x) = T₁(x)+T₂(x),

(ii) (aT)x = aT(x) and norm defined by $||T|| = \sup\{\frac{||T(x)||}{||x||} / x \in \mathbb{N} \text{ and } x \neq 0 \}$

If N^1 is a Banach space ,then $B(N,N^1)$ is also Banach space.

1. If $T_1, T_2 \in B(N, N^1)$, the

 $\|T_1T_2\| \leq \|T_1\|\|T_2\|$

2. If $T_n \rightarrow T$ and $T_n^{\ 1} \rightarrow T^1$, Then $T_n T_n^{\ 1} \rightarrow TT^1$ as $n \rightarrow \infty$ which implies that the multiplication is jointly continuous.

Theorem

- ➤ Let M be a closed subspace of a normed linear space and T be the natural mapping of N onto the quotient space $\frac{N}{M}$ defined by T(x) =x+M,Then T is bounded linear transformation with $||T|| \le 1$
- ➤ Let N and N¹ be normed linear space and let T:N→N¹ be a bounded linear transformation of N into N¹, If M is the kernel of T, then
 - i) M is closed subspace of N
 - ii) T induces a natural transformation T^1 of N/M onto N¹ such that $||T^1|| = ||T||$

Definition

Let N and N¹ be normed linear space ,an **isometric isomorphism** of N into N¹ is a oneone linear transformation T of N into N¹ such that ||T(x)|| = ||x|| for all $x \in N$

For any $x, y \in N \Rightarrow ||T(x) - T(y)|| = ||T(x - y)|| = ||x - y||$

Definition

Topologically isomorphic

Two normed linear space N and N¹ are said to be topologically isomorphic, if

- (i) There exists a linear operator $T:N \rightarrow N^1$ having the inverse T^{-1}
- (ii)T establishes the isomorphism of N and N^1
- (iii) T and T^{-1} are continuous in their respective domains.

Theorem

Let N and N¹ be normed linear space and Let T be linear transformation of N into N^{1.} If T(N) is the range of T, Then the inverse T⁻¹ exists and is bounded (continuous) in its domain of definition if and only if there exists a constan m>0 such that $\mathbf{m}||\mathbf{x}|| \le ||\mathbf{T}(\mathbf{x})||$ for all $\mathbf{x} \in N$

Theorem

Let N and N¹ be normed linear space. The N and N¹ are topologically isomorphic if and only if there exist a linear operator T on N onto N¹ and positive constants m and M such that $\mathbf{m} \| \mathbf{x} \| \le \| \mathbf{T}(\mathbf{x}) \| \le \mathbf{M} \| \mathbf{x} \|$ for all $\mathbf{x} \in N$

FUNCTIONAL ANALYSIS TEST – 1

1. If f and g are real or complex valued integrable function defined on [a,b], Then Minkowsk's inequality is

(a)
$$\left[\int_{a}^{b} |f(x) + g(x)| \, dx\right]^{p} dx \le \left[\int_{a}^{b} |f(x)|^{p} \, dx\right]^{\frac{1}{p}} + \left[\int_{a}^{b} |g(x)|^{q} \, dx\right]^{\frac{1}{q}}$$
 where $p < 1$

(b)
$$\left[\int_{a}^{b} |f(x) + g(x)| \, dx\right]^{p} dx \le \left[\int_{a}^{b} |f(x)| \, dx\right] + \left[\int_{a}^{b} |g(x)| \, dx\right] \text{ where } p \ge 1$$

(c)
$$\left[\int_{a}^{b} |f(x) + g(x)| \, dx\right]^{p} dx \le \left[\int_{a}^{b} |f(x)|^{p} \, dx\right]^{\frac{1}{p}} + \left[\int_{a}^{b} |g(x)|^{p} \, dx\right]^{\frac{1}{p}}$$
 where $p \ge 1$

(d)
$$\left[\int_{a}^{b} |f(x) + g(x)| \, dx\right]^{p} dx > \left[\int_{a}^{b} |f(x)|^{p} \, dx\right]^{\frac{1}{p}} + \left[\int_{a}^{b} |g(x)|^{q} \, dx\right]^{\frac{1}{q}}$$
 where $p \ge 1$

2. If N be a complex or real linear space a norm on N is a function ,Then

(a) $ x + y \le x + y $	(b) $ x + y > x + y $				
(c) $ x + y + y $ (d) $ x + y \le x $					
3. Let N be a normed linear space, For every $x, y \in N$					
(a) $ x - y \le x - y $	(b) $ x - y > x - y $				
(c) $ x - y = x - y $	(d) $ x - y = 0$				
4. If every Cauchy sequence in N converges to an element of a normed linear space N, then N is					
(a) Banach space (b) complete	e (c) Hilbert space (d)Metric space				
 5. lⁿ_p is (a) Not Banach space (b) Linear sp 6. In a Banach space x_n→ x, y_n→ y implied (a) x+y (b) x/y/y 7. If N be a Normed linear space and x 	es that $x_n+y_n \rightarrow$ (c) x-y (d) xy				
(a) $x=0$ (b) x is a real	(c) $x \neq 0$ (d) $x > 0$				
8. Every Cauchy sequence in a normed linear space is					
(a) not converges	(b) absolutely convergent				
(c) bounded.	(d)neither convergent nor divergent				
9. A normed linear space N is complete if and only if every absolutely convergent series is,					
(a) not converges	(b) convergent				
(c) divergent	(d)neither convergent nor divergent				
10. A subspace M of a Banach space B is complete if and only if M is(a) bounded(b) Unbounded(c) Closed in B(a) bounded(b) Unbounded(c) Closed in B(d) Open in B11. If M is a closed linear subspace of a normed linear space N, Then quotian					
space $\frac{N}{M}$ is a normed linear space with norm					
(a) $ x + M = \sup\{ x + m / m \in M \}$	(b) $ x + M = \inf\{ x / x \in \mathbb{N} \}.$				
(c) $ x + M = \inf\{ x + m / m\epsilon M \}$ (d) $ x + M = \inf\{ m / m\epsilon M \}.$					
12. Let M be a closed subspace of a normed linear space N, For each $x \in N$,					
let $ x + M = \inf\{ x + m / m \in M \}$ then respective to this norm					
(a) N+M is a normed linear space (b)NM is a normed linear space					
(c) $\frac{N}{M}$ is a normed linear space (d) N - M is a normed linear space					
13. A complete normed linear space is (a) Hilbert space(b) Banach space(c) Vector space(d) None of these					

14. M is a closed linear subspace of the a normed linear space N. If N is a Banach space then the following is also a Banach space.					
(a) NM	(b) N+M	(c)	N-M	(d) $\frac{N}{M}$	
15. If p> 1 and q is defined by $\frac{1}{p} + \frac{1}{q} = 1$ and for f and g two complex valued measurable function					
such that $f \in L_p(x)$, $g \in L_q(x)$, then the Holder's inequality is					
(a) $\int_{x} fg dx \le f $	$\ _p \ g\ _q$	(b)	$\left \int_{x} fgdx\right \leq \ f$	$\ g\ _{q}$	
(c) $\int_{x} fg dx \ge \ $	$f \ _p \ g\ _q$	(d)	$\left \int_{x} fgdx\right \geq \ f$	$f \ _p \ g\ _q$	
16. Let M be a subspace of a normed linear space N. The set of all cosets $\{x+M x \in N\}$ is a normed space in the quotient form if					
(a) M is an open sul	ospace of N		(b) $\mathbf{M} = \mathbf{N}$		
(c) M is a closed su	ıbspace of N	((d) M is finite sub	space os N	
17. Let $(x_1, x_2, x_3,, x_n) \in \mathbb{R}^n$. $ x = (\sum_{i=1}^n x_i ^p)^{\frac{1}{p}}$ does not define a norm when					
(a) P = 100	(b) $p = \frac{3}{2}$		(c) p= 1	(d) $p = \frac{1}{2}$	
18. Holder's inequality $\sum_{i=1}^{n} x_i y_i \le \left[\sum_{i=1}^{n} x_i ^p\right]^{\frac{1}{p}} \left[\sum_{i=1}^{n} y_i ^q\right]^{\frac{1}{q}}$ for p,q such that ,					
(a) $p > 1$ and $p + $	q = 1		(b) p> 1 and $\frac{1}{p}$	$-\frac{1}{q} = 1$	
(c) p> 1 and $\frac{1}{p} + \frac{1}{q} =$	0		(d) $p > 1$ and $\frac{1}{p}$	$+ \frac{1}{a} = 1$	
19. If $1 \le P_1 < P_2 < \infty$, then					
(a) $l_{p_1} \subset l_{p_2}$ and \parallel	$\ x\ _{p_2} \ge \ x\ _{p_1}$		(b) $l_{p_1} \supset l_{p_2}$ ar	$\ x\ _{p_2} \le \ x\ _{p_1}$	
(c) $l_{p_1} \subset l_{p_2}$ and $ x _{p_2} \le x _{p_1}$ (d) $l_{p_1} \supset l_{p_2}$ and $ x _{p_2} \ge x _{p_1}$					
20. The linear space l_{∞} of all bounded sequence $x = \{x_n\}$ is Banach space with the Norm.					
	$, x_2 , x_3 , \dots , x_n $		(b) $ x =$	$= \sup_{1 \le n < \infty} x_n $	
(c) $ x = [\sum_{i=1}^{n} x_i]$	$[p]\overline{p}$		(d) No	one of these	