TRB MATHEMATICS
ALGEBRA

CLASS -I

Equivalence relation

The binary relation \sim on A is said to be an Equivalence relation on A if for all $\mathrm{a}, \mathrm{b}, \mathrm{c}$ in A

1.Reflex

$$
\mathrm{a} \sim a
$$

2. Symmstry

$\mathrm{a} \sim b \Rightarrow \mathrm{~b} \sim a$

3. Transity

$a \sim b$ and $b \sim c \Rightarrow a \sim c$

Examples:

1. Define $\mathrm{a} \sim b$ for all $\mathrm{a}, \mathrm{b} \in S$ such that $\mathrm{a}=\mathrm{b}$, Than \sim is Equivalence relation on S
2. Define $\mathrm{a} \sim b$ for all $\mathrm{a}, \mathrm{b} \in S$ such that $\mathrm{a}-\mathrm{b}$ is even integer, Than \sim is Equivalence relation on S

Equivalence class

The Equivalence class of $\mathrm{a} \in A$ is the set $\{\mathrm{x} \in A \backslash a \sim x\}$
It is denoted by cl(a)

Congruent modulo

Let n be a fixed positive integer. If a and b are integers such that $\mathrm{a}-\mathrm{b}$ is divisible by n , We say that a is congruent to b modulo n and write $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{n})$

Residue class modulo
$[\mathrm{a}]=\{\mathrm{x} \in Z / \mathrm{x} \equiv \mathrm{a}(\bmod \mathrm{n})\}$

Mapping

If A and B are nonempty sets, than a mapping from A to B is a subset of $\mathrm{A} \times B$ such that for every $\mathrm{a} \in A$ there is aunique $\mathrm{b} \in B$ such that $(\mathrm{a}, \mathrm{b}) \in \mathrm{A} \times B$ map $\mathrm{f}: \mathrm{A} \rightarrow B, \mathrm{f}(\mathrm{a})=\mathrm{b}$, where b is unique in B

Onto mapping

The mapping $\mathrm{f}: \mathrm{A} \rightarrow B$ is said to be onto, if given $\mathrm{b} \in B$ there exists an element $\mathrm{a} \in A$ such that

$$
f(a)=b
$$

One-to-one mapping

The mapping $f: A \rightarrow B$ is said to be One-to-one mapping ,if whenever $a=b$,than $f(a)=f(b)$ or $\mathrm{a} \neq \mathrm{b}$,than $\mathrm{f}(\mathrm{a}) \neq \mathrm{f}(\mathrm{b})$

Composition(Product) of fuctions

If $\mathrm{f}: \mathrm{A} \rightarrow B$ and $\mathrm{g}: \mathrm{B} \rightarrow C$, than Composition of f and g is a map $\mathrm{g} \circ \mathrm{f}: \mathrm{A} \rightarrow C$ defined by $(\mathrm{g} . \mathrm{f}) \mathrm{a}=\mathrm{g}[\mathrm{f}(\mathrm{a})]$

Greatest common division (GCD)

The positive integer c is said to be Greatest common division of a and b if
(i). c is a division of a and b (cla and clb)
(ii). Any divisior of a and b is a divisor of c ($\mathrm{d} \backslash \mathrm{a}$ and $\mathrm{d} \backslash \mathrm{b} \Rightarrow \mathrm{dlc}$)
it is denoted by $(\mathrm{a}, \mathrm{b})=\mathrm{c}$

Relative prime

The integers a, b are called relatively prime, if $(\mathrm{a}, \mathrm{b})=1$
$>$ If a and b are non zero integers, than (a, b) exists and we can find integers m, n such that $(\mathrm{a}, \mathrm{b})=\mathrm{ma}+\mathrm{nb}$
$>$ If a,b are relatively prime,than there exists m, n such that ma+nb $=1 \quad(\quad(\mathrm{a}, \mathrm{b})=$ $m a+n b=1 \quad)$

Prime number

The integer $\mathrm{p}>1$ is a prime number If its only divisors are $\pm 1, \pm p$
$>$ If a is relatively prime to b and albc, then alc

Unique factorization

Any positive integer $\mathrm{a}>1$ can be factored in a unique way as $\mathrm{a}=\mathrm{p}_{1}{ }^{\mathrm{X}} \mathrm{p}_{2}{ }^{y} \ldots \quad \mathrm{p}_{\mathrm{n}}{ }^{\mathrm{Z}}$ are prime numbers and each $\mathrm{x}>0$

Division Algorithm

Let a and b be integers, with $\mathrm{b}>0$. Then there exist unique integers q and r such that

$$
\mathrm{a}=\mathrm{bq}+\mathrm{r} \quad \text { where } 0 \leq \mathrm{r}<\mathrm{b} .
$$

GROUP:

A non-empty set G with abinary operation * is called agroup, If the following conditions are satisfied,
1.Closure: For all $\mathrm{a}, \mathrm{b} \epsilon \mathrm{G} \Rightarrow \mathrm{a} * \mathrm{~b} \epsilon \mathrm{G}$
2.Associative: For all $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{G} \Rightarrow \mathrm{a}^{*}\left(\mathrm{~b}^{*} \mathrm{c}\right)=\left(\mathrm{a}^{*} \mathrm{~b}\right) * \mathrm{c}$
3.Identity: For all $\mathrm{a} \epsilon \mathrm{G}$ there exists an element $\mathrm{e} \epsilon \mathrm{G}$ such that $\mathrm{a}^{*} \mathrm{e}=\mathrm{e}^{*} \mathrm{a}=\mathrm{a}$
4.Inverse: For every a $\epsilon \mathrm{G}$ there exists an element $a^{-1} \epsilon \mathrm{G}$ such that $\mathrm{a}^{*} a^{-1}=a^{-1 *} \mathrm{a}=\mathrm{e}$

Abelian group (or) commutative group:

A group with commutative property is called an abelian group
That is, For all $\mathrm{a}, \mathrm{b} \epsilon \mathrm{G} \Rightarrow \mathrm{a}^{*} \mathrm{~b}=\mathrm{b}^{*} \mathrm{a}$
Semi group : A set satisfying closure and associative which is called semi group.
Monoid: A set satisfying closure, associative ,identity which is called Monoid.

Oder of the Group

Total number of element in a Group is called order Group

Example:

1. ($\mathrm{N},+$), ($\mathrm{E},$.$) are semi group.$
2. (N,.) ,(Z,.) ,(Q,.) ,(R,.) (C,.) are monoid.
3.(Z,+),(Q,+) ,(R,+) ,(C,+),(Q-\{0\} ,.),(R-\{0\},.),(C-\{0\} ,.)are abelian group.
4.The set of all unimodular complex numbers under multiplication of complex numbers is a group.
5.The set of all $\mathrm{m} \times \mathrm{n}$ matrices under the addition of matrices is an abelian group.
3. The set of all $n \times n$ non-singular matrices under the multiplication of matrices is finite abelian group.
$7.4^{\text {th }}$ root of unity $\{1,-1, i,-i\}$ is an abelian group under multiplication.
4. $\{1,-1\}$ is a Group under multiplication
$8.3^{\text {rd }}$ root or unity $\left\{1, \omega, \omega^{2}\right\}$ is an abelian group under multiplication.
9.The set of all nth root of unitys under multiplication of complex number is an abelian group.
$10 . \mathrm{Z}_{5}=\{[0],[1],[2],[3],[4]\}$,the set of all residue of integer modulo 5 under addition modulo 5 is an abelian Group.
$11 . \mathrm{z}_{\mathrm{p}}$ is an abelian , where p is prime number.
5. $(\mathrm{E},+)$ is an abelian group, where E is the set of even numbers.
6. $\mathrm{G}=\left\{2^{n} / \mathrm{n} \in \mathrm{Z}\right\}$ is a group under multiplication.[identity 2^{0}, inverse of 2^{n} is 2^{-n}]
7. $\mathrm{G}=\left\{\mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{f}_{3}, \mathrm{f}_{4}\right\}$ defined by $\mathrm{f}_{1}(\mathrm{z})=\mathrm{z}, \mathrm{f}_{2}(\mathrm{z})=-\mathrm{z}, \mathrm{f}_{3}(\mathrm{z})=\frac{1}{z}, \mathrm{f}_{4}(\mathrm{z})=-\frac{1}{z}$ is an abelian group under composition of mapping.[$f 1$ is identity, inverse of $f 1$ is f_{1}, inverse of f_{2} is f_{2}, inverse of f_{3} is f inverse of $f 4$ is $f 4$,]
8. $(\mathrm{Z}, *)$ is an finite abelian group where $*$ is defined as $\mathrm{a} * \mathrm{~b}=\mathrm{a}+\mathrm{b}+2$ Identity e $=-2$, Inverse of a is, $a^{-1}=-a-4$
9. set of all matrices of the form $\left\{\left(\begin{array}{ll}x & x \\ x & x\end{array}\right) / \mathrm{x} \in \mathrm{R}-\{0\}\right.$ \} is a group under matrix multiplication.

Identity $\mathrm{E}=\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$, Inverse of $\mathrm{A}=\left(\begin{array}{ll}x & x \\ x & x\end{array}\right)$ is, $A^{-1}=\left(\begin{array}{cc}\frac{1}{4 x} & \frac{1}{4 x} \\ \frac{1}{4 x} & \frac{1}{4 x}\end{array}\right)$,
17.G be the set of all rational number except 1 and $*$ be defined on G by a $* \mathrm{~b}=\mathrm{a}+\mathrm{b}-\mathrm{ab}$, then $\left(\mathrm{G},{ }^{*}\right)$ is an abelian group. $\left\{\right.$ Identity e $=0$,Inverse of a is, $\left.a^{-1}=\frac{a}{a-1}\right\}$
18. Let $\mathrm{G}=S_{3}$ be the set of one-one mappings of the set $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right\}$ onto itself ,It is a Group of order 6 under the product
19. Let n be a integer. $\mathrm{G}=\left\{a^{i} \quad / i=0,1,2, \ldots(n-1)\right\}$ is a group under multiplication
20. Let G be the set of all 2×2 matrices $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are real numbers,such that ad$b c \neq 0$ is a Group under multiplication.
21. Let G be the set of all 2×2 matrices $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are real numbers,such that ad$\mathrm{bc}=1$ is a Group under multiplication.
22. Let G be the set of all 2×2 matrices $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are real numbers, not both zero,such that $a^{2}+b^{2} \neq 0$ is an abelian Group under multiplication.
23. Let G be the set of all 2×2 matrices $\left[\begin{array}{ll}a & b \\ 0 & d\end{array}\right]$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are real numbers, not both zero, such that $a d \neq 0$ is an abelian Group under multiplication.
24. Let G be the set of all 2×2 matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are integers modulo 2 , such that ad - $\mathrm{bc} \neq 0$ Using matrix multiplications as the operation in G, then G is a group of order 6.

Solution:

In the first row of any matrix belonging to G, each entrycould be 0 or 1 in Z_{2}, but $(0,0)$ should be extracted since ad - $\mathrm{bc} \neq 0$ Hence we have $2^{2}-1$ different choices for the first row. The second row is not a multiple of the first row. Hence G has $\left(2^{2}-1\right) 2$ elements, namely 6 .

$$
G=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)\right\}
$$

25. Let G be the set of all 2×2 matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are integers modulo 3, such that ad - $\mathrm{bc} \neq 0$ Using matrix multiplications as the operation in G, then G is a group of order 48.

Solution:

In the first row of any matrix belonging to G , each entrycould be 0 or 1 in Z_{2}, but $(0,0)$ should be extracted since $\mathrm{ad}-\mathrm{bc} \neq 0$ Hence we have $3 \times 3-1$ different choices for the first row. The second row is not a multiple of the first row. Second row (3×3)3 possibilities Hence the number of elements in D is $8 \times 6=48$

Properties:

If G be the group,
1.The identity element of G is unique.
2. Every $\mathrm{a} \epsilon \mathrm{G}$ has aunique invers in G .
3. For every $\mathrm{a} \in \mathrm{G},\left(a^{-1}\right)^{-1}=\mathrm{a}$.
4.For all $\mathrm{a}, \mathrm{b} \in \mathrm{G},(a * b)^{-1}=b^{-1 *} a^{-1}$
5.For all $\mathrm{a}, \mathrm{b} \in \mathrm{G}$,
(i) $\mathrm{a} * \mathrm{~b}=\mathrm{a} * \mathrm{c} \Rightarrow \mathrm{b}=\mathrm{c}$ [left cancellation law]
(ii) $\mathrm{b}^{*} \mathrm{a}=\mathrm{c} * \mathrm{c} \Rightarrow \mathrm{b}=\mathrm{c}$ [right cancellation law]
6. For all $\mathrm{a}, \mathrm{b} \epsilon \mathrm{G}$, the equation $\mathrm{a} * \mathrm{x}=\mathrm{b}$ and $\mathrm{y}^{*} \mathrm{a}=\mathrm{b}$ have unique solution for x and y in G ,the solutions are $\mathrm{x}=\mathrm{a}^{-\mathrm{l}^{*}} \mathrm{~b}$ and $\mathrm{y}=\mathrm{b}^{*} \mathrm{a}^{-1}$.
7. $(a * b)^{2}=a^{2} * b^{2}$ for all $\mathrm{a}, \mathrm{b} \epsilon \mathrm{G}$ iff G is an abelian group.
8.If every element of a group G is its own inverse, then G is an abelian .
9.every group of order FOUR is an abelian.
9. If G is an group in which $(a * b)^{k}=a^{k} * b^{k}$ for all three consecutive integers k and for all $\mathrm{a}, \mathrm{b} \epsilon \mathrm{G}$,then G is an abelian .
10. If the Group G has three element, it must be abelian.
11.A group having 4 or lessthan 4 elements is an abelian group.
12.If G is a finite group,then there exists a positive integer N such that $a^{N}=\mathrm{e}$ for all $\mathrm{a} \in \mathrm{G}$.
13. If G is a group of even order, prove that it has an element $\mathrm{a} \neq \mathrm{e}$ satisfying $\mathrm{a}^{2}=\mathrm{e}$
14. If G is group of prime order, Than G is an abelian (TRB-2004)

SUBGROUP:

A non empty subset H of agroup G is called a subgroup of G if H itself form a group under the same operation defined on G.

Example

1.(E,+) is a subgroup of ($\mathrm{Z},+$)
2. $\{1,-1\}$ is subgroup of $\{1,-1, i,-\mathrm{i}\}$
3. $(\mathrm{Z},+$) is subgroup of ($\mathrm{Q},+$)
4. $(\mathrm{Z},+$) is subgroup of $(\mathrm{R},+)$

5 . Zn is a subgroup of Z under addition, where $\mathrm{n} \in Z$
6. Let G be the Group of integers under addition, H the subset consisting of the multiples of 5 ,then H is a subgroup of G .
7. Let G be the Group of nonzero real numbers under multiplication, and let H be the sub set of positive rational numbers, then H is a subgroup of G .
8. Let a and b be integers.

Prove that the subset $\mathrm{aZ}+\mathrm{bZ}=\{\mathrm{ak}+\mathrm{bl} / \mathrm{l}, \mathrm{k} \in \mathrm{Z}\}$ is a subgroup of Z
9. Let G be the set of all 2×2 matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with ad - $\mathrm{bc} \neq 0$ Using matrix multiplication
10. Let $\mathrm{H}=\left\{\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \in G / \mathrm{ad} \neq 0\right\}$, then H is a subgroup of G
11. Let G be the Group of all nonzero complex numbers $\mathrm{a}+\mathrm{ib}$ (a, b real, not both zero) under multiplication , and $\mathrm{H}=\left\{\mathrm{a}+\mathrm{ib} \in \mathrm{G} / a^{2}+b^{2}=1\right\}$ is a subgroup of G

The center of a Group

The center of a group G is $Z(G)=\{x \in G / a x=x a$ for all $a \in G\}$, Then $Z(G)$ is a subgroup of G.

Normalizer (or) centralizer

$\mathrm{N}(\mathrm{a})=\{\mathrm{x} \in G \backslash a x=x a\}$ is a subgroup of G and it is called Normalizer of $\mathrm{G} . \mathrm{N}(\mathrm{a})$ is a subgroup of G

The center of G is the intersection of all the centralizer subgroups of G .

Theorem

$>$ A non empty subset H of a group G is a subset of $\mathrm{G} \Leftrightarrow$ (i) $\mathrm{a}, \mathrm{b} \epsilon \mathrm{H} \Rightarrow \mathrm{a} * \mathrm{~b} \epsilon \mathrm{H}$
(ii) $\epsilon \mathrm{H} \Rightarrow a^{-1} \epsilon \mathrm{H}$
$>$ A non empty subset H of a group G is a subset of $\mathrm{G} \Leftrightarrow \mathrm{a}, \mathrm{b} \epsilon \mathrm{H} \Rightarrow \mathrm{a}^{*} b^{-1} \epsilon \mathrm{H}$
$>$ If H is a non empty subset finite subset of a group G and H is closed under the product in G ,than H is a subgroup of G .
$>$ If H and K are any two non empty subgroup of G,than $(H * K)^{-1}=K^{-1} * H^{-1}$
$>$ A non empty subset H of a group G is a subset of G, H is asubgroup of G iff $\mathrm{HH}=\mathrm{H}$ and $H^{-1}=H$
> If H and K are subgroup of G, HK is subgroup of G iff $\mathrm{HK}=\mathrm{KH}$
> If H and K are subgroup of G ,than $\mathrm{H} \cap K$ is also a subgroup of G
> Intersection of any number of subgroups of G is a subgroup of G
$>$ H K is a subgroup of G iff $\mathrm{H} \subset K$ or $K \subset H$
> If H and K are subgroup of abelian group G, HK is subgroup of G .
$>$ If H and K are two subgroup of a finite group G , and $\mathrm{H} \subseteq K \operatorname{Than}[G: H]=$ [G:K][K:H]
$>$ If H and K are two finite subgroup of a group G and if $\mathrm{O}(\mathrm{H}), \mathrm{O}(\mathrm{K})$ are relatively prime,
thanH $\cap K=\{e\}$
If H and K are finite subgroup of G ,Than $\mathrm{o}(\mathrm{HK})=\frac{o(H) o(k)}{o(H \cap K)}$
$>$ If H and K are subgroup of a finite group G and $\mathrm{o}(\mathrm{H})>\sqrt{o(G)}, \mathrm{o}(\mathrm{K}))>\sqrt{o(G)}$ than $\mathrm{H} \cap \mathrm{K} \neq\{e\}$
$>\mathrm{aHa}^{-1}=\left\{\mathrm{aha}^{-1} \mathrm{~h} \in H\right\}$ is a sub group of G

QUESTIONS FOR FIRST CLASS WITH ANSWER

1. Which of the following is not a Group
(a) $(\mathrm{Z},+)$
(b) ($\mathrm{Q},+$)
(c) ($\mathrm{R},$.
(d) $(\mathrm{Q}-\{0\},$.
2. $(\mathrm{Z}, *)$ is an finite abelian group where $*$ is defined as $a * b=a+b+2$,then inverse element of $\mathrm{a} \in G$ is,
(a) $\mathrm{a}-4$
(b) $-\mathbf{a}-4$
(c) $-a+4$
(d) $-\mathrm{a}-2$
3. $\mathrm{G}=\left\{\left(\begin{array}{ll}a & a \\ a & a\end{array}\right): a \in R-\{0\}\right\}$ is a Group under multiplication, then inverse of $\left(\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right)$ is
(a) $\left(\begin{array}{ll}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$
(b) $\left(\begin{array}{ll}\frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4}\end{array}\right)$
(c) $\left(\begin{array}{ll}\frac{1}{8} & \frac{1}{8} \\ \frac{1}{8} & \frac{1}{8}\end{array}\right)$
(d) $\left(\begin{array}{ll}-2 & -2 \\ -2 & -2\end{array}\right)$
4. Let $\mathrm{G}=\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$ is a Group under composition of the functions, then invers of f_{3} is,where $f_{1}(z)=z, f_{2}(z)=-z, f_{3}(z)=\frac{1}{z}, f_{4}(z)=-\frac{1}{z}$
(a) f_{1}
(b) f_{2}
(c) f_{3}
(d) f_{4}
5. Let G be the set of all 2×2 matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are integers modulo 3 , such that ad - bc $\neq 0$ Using matrix multiplications as the operation in G,then G is a group of order
(a) 48 .
(b) 18
(c) 6
(d) 24
6. If G is a finite group of n , then for every $\mathrm{a} \in G$, we have
(a) $a^{n}=e$
(b) $a^{n}=a^{-1}$
(c) $a^{n}=a$
(d) None of these
7. $\{1,-1\}$ is a sub group of the group under multiplication
(a) $\{1, \mathrm{I},-\mathrm{i}\}$
(b) $\{\mathbf{1 , - 1 , i , - i \}}$
(c) $\{1,0,-1, i\}$
(d) $\{-1, \mathrm{I},-\mathrm{I}\}$
8. If e_{1} and e_{2} are two identity element of group G , then
(a) $e_{1}=e_{2}$
(b) $e_{1} \neq e_{2}$
(c) $e_{1}=\mathrm{c} e_{2}$
(d)None of these
9. If G is a group ,then for all $\mathrm{a}, \mathrm{b} \in G$
(a) $(a b)^{-1}=a^{-1} b^{-1}$
(b) $(\mathbf{a b})^{-1}=b^{-1} a^{-1}$
(c) $(\mathrm{ab})^{-1}=\mathrm{ab}$
(d) $(\mathrm{ab})^{-1}=\mathrm{ba}$
10.If G is a group, such that $(a b)^{n}=a^{n} b^{n}$ for three consecutive integers n for all $a, b \in G$, then G is
(a) abelian
(b) non-abelian
(c) cyclic
(d) additive group
10. Let G be the set of all 2×2 matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are integers modulo 2 , such that $\mathrm{ad}-\mathrm{bc} \neq 0$ Using matrix multiplications as the operation in G,then G is a group of order is,
(a) 2
(b) 3
(c) 4
(d) 6
12.If H_{1} and H_{2} are two subgroup of G , then folloeing is also a group of G
(a) $\mathrm{H}_{1} \cap \mathrm{H}_{2}$
(b) $\mathrm{H}_{1} \cup \mathrm{H}_{2}$
(c) $\mathrm{H}_{1} \mathrm{H}_{2}$
(d) None of these
13.If $\mathrm{axa}=\mathrm{b}$, then x is equal to
(a) $a^{-1} b$
(b) $a^{-1} b^{-1}$
(c) $a^{-1} b^{-1} b^{-1}$
(d) $a^{-1} b a^{-1}$
14.If G is a Group, for $a \in G, N(a)$ is the normalize of a, then for all $x \in N(a)$
(a) $x a=a x$
(b) $x a=e$
(c) $a x=e$
(d) $x a \neq a x$
15.If G is a group such that $a^{2}=e$ for all $a \in G$, then G is
(a) abelian group
(b)non abelian group
(c) ring
(d) field
11. If G is a group and $\mathrm{a} \in G$, such that $a^{2}=a$, then ' a ' is equal to
(a) identity element
(b) inverse
(c) zero element
(d) None of these
17.If H, K are two subgroup of G , then Hk is a subgroup of G ,iff
(a) $\mathrm{HK}=1$
(b) $\mathbf{H K}=\mathbf{K H}$
(c) $\mathrm{HK}=\mathrm{H}^{-1} \mathrm{~K}^{-1}$
(d) None of these
12. For all $\mathrm{a}, \mathrm{b} \epsilon \mathrm{G}$, the equation $\mathrm{a}^{*} \mathrm{x}=\mathrm{b}$ and $\mathrm{y}^{*} \mathrm{a}=\mathrm{b}$ have unique solution for x and y in G,the solutions are
(a) $x=a * b$ and $y=b a$
(b) $\mathrm{x}=\mathrm{a} b^{-1}$ and $\mathrm{y}=\mathrm{a}^{-1^{*}} \mathrm{~b}$
(c) $x=a^{-1 *} b$ and $y=b^{*} a^{-1}$.
(d) $x=b^{*} a^{-1}$ and $y=a^{-1 *} b$
19.If H is a subgroup of G ,then which of the following correct
(i) $\mathrm{H}^{-1}=\mathrm{H}$
(ii) $\mathrm{h} \in H \Rightarrow h^{-1} \in H$
(iii) $\mathrm{H}^{-1} \neq H$
(iv) $\mathrm{h}^{-1} \in \mathrm{H}^{-1}$ then $\mathrm{h} \in H$
(a) (i),(ii)
(b) (ii), (iii), (iv)
(c) (i),(ii), (iv)
(d) (i), (iv)
20.If H and K are two finite subgroup with order 6 and 5 of a group G , then $\mathrm{O}(\mathrm{H} \cap K)$ is,
(a) 1
(b) 6
(c) 5
(d) 30
