TRB MATHEMATICS

ALGEBRA

CLASS -I

Equivalence relation

The binary relation ~ on A is said to be an Equivalence relation on A if for all a,b,c in A

1.Reflex

a~*a*

2. Symmstry

 $a \sim b \Rightarrow b \sim a$

3. Transity

 $a \sim b and b \sim c \Rightarrow a \sim c$

Examples:

- 1. Define $a \sim b$ for all $a, b \in S$ such that a = b, Than \sim is Equivalence relation on S
- 2. Define $a \sim b$ for all $a, b \in S$ such that a b is even integer, Than \sim is Equivalence relation on S

Equivalence class

The Equivalence class of $a \in A$ is the set { $x \in A \setminus a \sim x$ }

It is denoted by cl(a)

Congruent modulo

Let n be a fixed positive integer. If a and b are integers such that a-b is divisible by n,We say that a is congruent to b modulo n and write $a \equiv b \pmod{n}$

Residue class modulo

 $[a] = \{x \in \mathbb{Z} / x \equiv a \pmod{n} \}$

Mapping

If A and B are nonempty sets, than a mapping from A to B is a subset of $A \times B$ such that for every $a \in A$ there is a nique $b \in B$ such that $(a,b) \in A \times B$

map $f: A \rightarrow B$, f(a) = b, where b is unique in B

Onto mapping

The mapping $f: A \rightarrow B$ is said to be onto, if given $b \in B$ there exists an element $a \in A$ such that

f(a) = b

One-to-one mapping

The mapping $f:A \rightarrow B$ is said to be One-to-one mapping ,if whenever a=b,than f(a)=f(b) or $a\neq b$,than $f(a)\neq f(b)$

Composition(Product) of fuctions

If $f:A \rightarrow B$ and $g:B \rightarrow C$, than Composition of f and g is a map $g \circ f: A \rightarrow C$ defined by $(g \circ f)a = g[f(a)]$

Greatest common division (GCD)

The positive integer c is said to be Greatest common division of a and b if

- (i). c is a division of a and b (ca and cb)
- (ii). Any divisior of a and b is a divisor of c (d\a and d\b \Rightarrow d\c)

it is denoted by (a,b) = c

Relative prime

The integers a ,b are called relatively prime, if (a,b) = 1

- If a and b are non zero integers, than (a,b) exists and we can find integers m,n such that (a,b) = ma+nb
- If a,b are relatively prime,than there exists m,n such that ma+nb = 1 ((a,b) = ma+nb=1)

Prime number

The integer p > 1 is a prime number If its only divisors are $\pm 1, \pm p$

> If a is relatively prime to b and a\bc, then a\c

Unique factorization

Any positive integer a > 1 can be factored in a unique way as $a = p_1^x p_2^y \dots p_n^z$ are prime numbers and each x > 0

Division Algorithm

Let a and b be integers, with b > 0. Then there exist unique integers q and r such that

a = bq + r where $0 \le r < b$.

GROUP:

A non-empty set G with abinary operation * is called agroup,If the following conditions are satisfied,

1.Closure: For all a,b $\epsilon G \Rightarrow a^*b \epsilon G$

2.Associative: For all a,b , $c \in G \Rightarrow a^*(b^*c) = (a^*b)^*c$

3.Identity: For all a ϵ G there exists an element e ϵ G such that a*e =e*a =a

4.Inverse: For every a ϵ G there exists an element $a^{-1} \epsilon$ G such that $a^*a^{-1} = a^{-1}a^* =$

Abelian group (or) commutative group:

A group with commutative property is called an abelian group

That is, For all $a, b \in G \Rightarrow a^*b = b^*a$

Semi group : A set satisfying closure and associative which is called semi group.

Monoid: A set satisfying closure , associative ,identity which is called Monoid.

Oder of the Group

Total number of element in a Group is called order Group

Example:

- 1. (N ,+) ,(E,.) are semi group.
- 2. (N,.) ,(Z,.) ,(Q,.) ,(R,.) (C,.) are monoid.

3.(Z,+),(Q,+),(R,+),(C,+),(Q-{0},.),(R-{0},.),(C-{0},.)are abelian group.

- 4. The set of all unimodular complex numbers under multiplication of complex numbers is a group.
- 5. The set of all $m \times n$ matrices under the addition of matrices is an abelian group.
- 6. The set of all n×n non-singular matrices under the multiplication of matrices is finite abelian group.
- 7.4th root of unity {1,-1,i,-i} is an abelian group under multiplication.
- 8. {1,-1} is a Group under multiplication

8.3rd root or unity $\{1, \omega, \omega^2\}$ is an abelian group under multiplication.

9. The set of all nth root of unitys under multiplication of complex number is an abelian group.

10. Z₅ = {[0],[1],[2],[3],[4]}, the set of all residue of integer modulo 5 under addition modulo 5 is an abelian Group.

 $11.z_p$ is an abelian ,where p is prime number.

12.(E,+) is an abelian group, where E is the set of even numbers.

13.G = $\{2^n / n\epsilon Z\}$ is a group under multiplication.[identity 2^0 , inverse of 2^n is 2^{-n}]

14.G ={ f_1, f_2, f_3, f_4 } defined by $f_1(z) = z, f_2(z) = -z, f_3(z) = \frac{1}{z}, f_4(z) = -\frac{1}{z}$ is an abelian group under composition of mapping.[f1 is identity, inverse of f1 is f_1 , inverse of f_2 is f_2 , inverse of f_3 is f inverse of f4 is f4,]

15.(Z,*) is an finite abelian group where * is defined as a*b = a+b+2

Identity e = -2, Inverse of a is, $a^{-1} = -a - 4$

16. set of all matrices of the form { $\begin{pmatrix} x & x \\ x & x \end{pmatrix} / x \in \mathbb{R} - \{0\}$ } is a group under matrix multiplication.

Identity
$$\mathbf{E} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$
, Inverse of $\mathbf{A} = \begin{pmatrix} x & x \\ x & x \end{pmatrix}$ is, $A^{-1} = \begin{pmatrix} \frac{1}{4x} & \frac{1}{4x} \\ \frac{1}{4x} & \frac{1}{4x} \end{pmatrix}$,

- 17.G be the set of all rational number except 1 and * be defined on G by a *b =a+b-ab,then (G,*) is an abelian group. { Identity e =0, Inverse of a is, $a^{-1} = \frac{a}{a-1}$ }
- 18. Let $G = S_3$ be the set of one-one mappings of the set $\{x_1, x_2, x_3\}$ onto itself, It is a Group of order 6 under the product
- 19. Let n be a integer. G ={ a^i / $i = 0,1,2, \dots (n-1)$ } is a group under multiplication
- 20. Let G be the set of all 2×2 matrices $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ where a,b,c,d are real numbers, such that adbc $\neq 0$ is a Group under multiplication.
- 21. Let G be the set of all 2× 2 matrices $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ where a,b,c,d are real numbers, such that adbc = 1 is a Group under multiplication.
- 22. Let G be the set of all 2× 2 matrices $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ where a,b,c,d are real numbers, not both zero, such that $a^2 + b^2 \neq 0$ is an abelian Group under multiplication.
- 23. Let G be the set of all 2× 2 matrices $\begin{bmatrix} a & b \\ 0 & d \end{bmatrix}$ where a,b,c,d are real numbers, not both zero, such that $ad \neq 0$ is an abelian Group under multiplication.

24. Let G be the set of all 2×2 matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ where a, b, c, d are integers modulo 2, such that ad - bc $\neq 0$ Using matrix multiplications as the operation in G ,then G is a group of order 6.

Solution:

In the first row of any matrix belonging to G, each entrycould be 0 or 1 in Z_2 , but (0, 0) should be extracted since ad - bc \neq 0Hence we have 2^2 - 1 different choices for the first row. The second row is not a multiple of the first row. Hence G has $(2^2 - 1)^2$ elements, namely 6.

$$\mathsf{G} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \right\}$$

25. Let G be the set of all 2×2 matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ where a, b, c, d are integers modulo 3,

such that ad - $bc \neq 0$ Using matrix multiplications as the operation in G ,then G is a group of order 48.

Solution:

In the first row of any matrix belonging to G, each entrycould be 0 or 1 in Z₂, but (0, 0) should be extracted since ad - bc \neq 0Hence we have $3 \times 3 - 1$ different choices for the first row. The second row is not a multiple of the first row. Second row (3×3)-3 possibilities Hence the number of elements in D is $8 \times 6 = 48$

Properties:

If G be the group,

1. The identity element of G is unique.

2. Every $a \epsilon G$ has a nique invers in G.

3.For every $a \in G$, $(a^{-1})^{-1} = a$.

4.For all a,b
$$\epsilon$$
G, $(a * b)^{-1} = b^{-1} * a^{-1}$

5.For all a,b ϵ G,

(i) $a^*b = a^*c \Rightarrow b = c$ [left cancellation law]

(ii) $b^*a = c^*c \Rightarrow b = c$ [right cancellation law]

6. For all a,b ϵ G,the equation a*x =b and y*a =b have unique solution for x and y in G,the solutions are x = a^{-1*}b and y = b*a⁻¹.

7. $(a * b)^2 = a^2 * b^2$ for all a,b ϵ G iff G is an abelian group.

8.If every element of a group G is its own inverse, then G is an abelian .

9. every group of order FOUR is an abelian.

9. If G is an group in which $(a * b)^k = a^k * b^k$ for all three consecutive integers k and for all a,b ϵ G,then G is an abelian.

10. If the Group G has three element ,it must be abelian.

11.A group having 4 or less than 4 elements is an abelian group.

12.If G is a finite group, then there exists a positive integer N such that $a^N =$ e for all $a \in G$.

13. If G is a group of even order, prove that it has an element $a \neq e$ satisfying $a^2 = e$

14. If G is group of prime order, Than G is an abelian (TRB-2004)

SUBGROUP:

A non empty subset H of agroup G is called a subgroup of G if H itself form a group under the same operation defined on G.

Example

- 1.(E,+) is a subgroup of (Z,+)
- 2.{1,-1} is subgroup of {1,-1,i,-i}
- 3.(Z,+) is subgroup of (Q,+)
- 4. (Z,+) is subgroup of (R,+)

5. Zn is a subgroup of Z under addition, where $n \in Z$

6. Let G be the Group of integers under addition,H the subset consisting of the multiples of 5 ,then H is a subgroup of G.

7. Let G be the Group of nonzero real numbers under multiplication, and let H be the sub set of positive rational numbers, then H is a subgroup of G.

8. Let a and b be integers.

Prove that the subset $aZ + bZ = \{ak + bl / l, k \in Z \}$ is a subgroup of Z

9. Let G be the set of all 2×2 matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with ad - bc $\neq 0$ Using matrix multiplication 10. Let H = { $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \in G / ad \neq 0$ }, then H is a subgroup of G

11. Let G be the Group of all nonzero complex numbers a+ib (a,b real, not both zero) under multiplication ,and H = { $a+ib\in G / a^2 + b^2 = 1$ } is a subgroup of G

The center of a Group

The center of a group G is $Z(G) = \{x \in G \mid ax = xa \text{ for all } a \in G\}$, Then Z(G) is a subgroup of G.

Normalizer (or) centralizer

N(a) = { $x \in G \setminus ax = xa$ } is a subgroup of G and it is called Normalizer of G. N(a) is a subgroup of G

The center of G is the intersection of all the centralizer subgroups of G.

Theorem

- A non empty subset H of a group G is a subset of G ⇔ (i) a,b ∈H⇒a*b ∈H
 (ii)a ∈H ⇒ a^{-1} ∈H
- → A non empty subset H of a group G is a subset of G \Leftrightarrow a,b ϵ H \Rightarrow a*b⁻¹ ϵ H
- ➢ If H is a non empty subset finite subset of a group G and H is closed under the product in G ,than H is a subgroup of G.
- ▶ If H and K are any two non empty subgroup of G, than $(H * K)^{-1} = K^{-1} * H^{-1}$
- A non empty subset H of a group G is a subset of G,H is a subgroup of G iff HH =H and $H^{-1} = H$
- ➤ If H and K are subgroup of G, HK is subgroup of G iff HK =KH
- > If H and K are subgroup of G, than $H \cap K$ is also a subgroup of G
- Intersection of any number of subgroups of G is a subgroup of G
- → $H \cup K$ is a subgroup of G iff $H \subset K$ or $K \subset H$
- ➤ If H and K are subgroup of abelian group G, HK is subgroup of G.
- If H and K are two subgroup of a finite group G, and H⊆ K Than[G: H] = [G:K][K:H]
- If H and K are two finite subgroup of a group G and if O(H),O(K) are relatively prime,

than $H \cap K = \{e\}$

- → If H and K are finite subgroup of G, Than $o(HK) = \frac{o(H)o(k)}{o(H \cap K)}$
- If H and K are subgroup of a finite group G and o(H)> $\sqrt{o(G)}$, o(K))> $\sqrt{o(G)}$ than H∩ K ≠ {e}

→ $aHa^{-1} = \{aha^{-1} | h \in H\}$ is a sub group of G

QUESTIONS FOR FIRST CLASS WITH ANSWER

- 1. Which of the following is not a Group
 - (a) (Z,+) (b) (Q,+) (c) (\mathbf{R}, \cdot) (d) $(Q-\{0\}, \cdot)$
- (Z,*) is an finite abelian group where * is defined as a*b =a+b+2,then inverse element of a∈ G is,
 - (a) a-4 (b) -a-4 (c) -a+4 (d) -a-2
- 3. $G = \left\{ \begin{pmatrix} a & a \\ a & a \end{pmatrix} : a \in R \{0\} \right\} \text{ is a Group under multiplication, then inverse of}$ $\begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} \text{ is}$ $(a) <math display="block">\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \qquad (b) \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} \qquad (c) \begin{pmatrix} \frac{1}{8} & \frac{1}{8} \\ \frac{1}{8} & \frac{1}{8} \end{pmatrix} \qquad (d) \begin{pmatrix} -2 & -2 \\ -2 & -2 \end{pmatrix}$
- 4. Let G = { f_1 , f_2 , f_3 , f_4 } is a Group under composition of the functions, then invers of
 - f_3 is, where $f_1(z) = z$, $f_2(z) = -z$, $f_3(z) = \frac{1}{z}$, $f_4(z) = -\frac{1}{z}$ (a) f_1 (b) f_2 (c) f_3 (d) f_4
- 5. Let G be the set of all 2×2 matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ where a, b, c, d are integers modulo 3, such that ad bc $\neq 0$ Using matrix multiplications as the operation in G ,then G is a group of order
 - (a) **48**. (b) 18 (c) 6 (d) 24
- 6. If G is a finite group of n, then for every $a \in G$, we have

(a)
$$a^n = e$$
 (b) $a^n = a^{-1}$ (c) $a^n = a$ (d) None of these

7. {1,-1} is a sub group of the group under multiplication

- (a) $\{1,I,-i\}$ (b) $\{1,-1,i,-i\}$ (c) $\{1,0,-1,i\}$ (d) $\{-1,I,-I\}$
- 8. If e_1 and e_2 are two identity element of group G, then

(a) $e_1 = e_2$ (b) $e_1 \neq e_2$ (c) $e_1 = c e_2$ (d)None of these

9. If G is a group ,then for all $a, b \in G$

(a) $(ab)^{-1} = a^{-1}b^{-1}$ (b) $(ab)^{-1} = b^{-1}a^{-1}$ (c) $(ab)^{-1} = ab$ (d) $(ab)^{-1} = ba$

10.If G is a group, such that $(ab)^n = a^n b^n$ for three consecutive integers n for all $a, b \in G$, then G is

(a) abelian	(b) non-abelian	(c) cyclic	(d) additive group
-------------	-----------------	------------	--------------------

11.Let G be the set of all 2×2 matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ where a, b, c, d are integers modulo 2,					
such that ad - bc $\neq 0$ Using matrix multiplications as the operation in G , then G is a					
group of order is,					
(a) 2	(b) 3	(c) 4	(d) 6		
12. If H_1 and H_2 are two subgroup of G, then folloeing is also a group of G					
(a) $H_1 \cap H_2$	(b) $H_1 \cup H_2$	(c) H_1H_2	(d) None of these		
13. If $axa = b$, then x is equal to					
(a) $a^{-1}b$	(b) $a^{-1}b^{-1}$	(c) $a^{-1}b^{-1}b^{-1}$	(d) $a^{-1}ba^{-1}$		
14.If G is a Group , for $a \in G$,N(a) is the normalize of a, then for all $x \in N(a)$					
(a) xa=ax	(b) $xa = e$	(c) $ax = e$	(d) xa≠ax		
15. If G is a group such that $a^2 = e$ for all $a \in G$, then G is					
(a) abelian group (b)non abelian group (c) ring (d) field					
16. If G is a group and $a \in G$, such that $a^2 = a$, then 'a' is equal to					
(a) identity e	lement (b) inver	cse (c) zero eler	nent (d) None of these		
17.If H,K are two subgroup of G,then Hk is a subgroup of G ,iff					
(a) HK =1	(b) HK =KH	(c) HK =H	$^{-1}K^{-1}$ (d) None of these		
18. For all a, b ϵ G, the equation a*x =b and y*a =b have unique solution for x and y in					
G, the solutions are					
(a) $x = a*b$ and $y = ba$		(b) $x = ab^{-1}$	(b) $x = ab^{-1}$ and $y = a^{-1*}b$		
(c) $x = a^{-1*}b$ and $y = b*a^{-1}$.		$(d)x = b^*a$	$(d)x = b^*a^{-1} and y = a^{-1^*}b$		
19.If H is a subgroup of G, then which of the following correct					
(i) $H^{-1} = H$	(ii) $h \in H \Rightarrow h^{-1} \in H$	$H \qquad (\text{iii}) \text{ H}^{-1} \neq H$	(iv) $h^{-1} \in H^{-1}$ then $h \in H$		
(a) (i),(ii)	(b) (ii), (iii), ((iv) (c) (i),(ii)	, (iv) (d) (i), (iv)		
20.If H and K are two finite subgroup with order 6 and 5 of a group G ,then $O(H \cap K)$ is,					
(a) 1	(b) 6	(c) 5	(d) 30		

.