TRB MATHEMATICS

DIFFERENTAL EQUATIONS

Unit-VIII - Differential Equations

Linear differential equation - constant co-efficients - Existence of solutions – Wrongskian - independence of solutions - Initial value problems for second order equations -Integration in series - Bessel's equation - Legendre and Hermite Polynomials - elementary properties - Total differential equations - first order partial differential equation - Charpits method

DIFFERENTIAL EQUATIONS

Definition:

An equation involving one dependent variable and its derivatives with respect to one or more independent variables is called a **Differential Equation**.

Differential equation are of two types.

- (i) Ordinary Differential equation
- (ii) Partial Differential equation

Ordinary Differential equation

An ordinary differential equation is a differential equation in

which a single independent variable enters either explicitly or implicitly.

(i)
$$\frac{dy}{dx} = x + 5$$
 (ii) $(y')^2 + (y')^3 + 3y = x^2$ (iii) $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 3y = 0$

Partial Differential equation

A partial differential equation is one ine which at least two independent variable occur. Example :

$$\mathbf{x}\frac{\partial z}{\partial x} + \mathbf{y}\frac{\partial z}{\partial y} = \mathbf{z}$$

Order

The **order** of a differential equation is the order of the highest differential coefficient **degree**

The **degree** of the differential equation is the degree of the highest order derivative after removing radicals and fractions

Problems

Find the oder and degree of the differential equation

1.
$$\left[1 + \left(\frac{dy}{dx}\right)^2\right]^3 = \left(\frac{d^2y}{dx^2}\right)^2$$

order = 2, degree = 2

2.
$$\cos x \frac{d^2 y}{dx^2} + \sin x \left(\frac{dy}{dx}\right)^2 + 8y = \tan x$$

order = 2, degree = 1

3.
$$\frac{d^2y}{dx^2} + \sqrt{1 + \left(\frac{dy}{dx}\right)^3} = 0$$

order = 2, degree = 2
4.
$$\frac{d^2y}{dx^2} = \left[4 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{4}}$$

order = 2, degree = 4
5.
$$\frac{d^2y}{dx^2} + x = \sqrt{y + \left(\frac{dy}{dx}\right)}$$

order = 1, degree = 2
6.
$$(1 + y')^2 = {y'}^2$$

order = 1, degree = 1
7.
$$y = 4\frac{dy}{dx} + 3x\frac{dx}{dy}$$

order = 1, degree = 2
8.
$$\sin x(dx + dy) = \cos x(dx - dy)$$

order = 1, degree = 1

9.
$$\frac{d^3y}{dx^3} + (\frac{d^2y}{dx^2})^3 + (\frac{dy}{dx})^5 + y = 7$$

order = 3, degree = 1

$$10.\frac{d^4x}{dt^4} + \frac{d^2x}{dt^2} + \left(\frac{dx}{dt}\right)^5 = e^t \quad (\mathbf{TRB})$$

order = 4, degree = 1

Formation of differential equations :

Let $f(x, y, c_1) = 0$ be an equation containing x, y and one arbitrary constant c_1 . If c_1 is eliminated by differentiating $f(x, y, c_1) = 0$ with respect to the independent equivalence and $\frac{dy}{dy}$

independent variable once, we get a relation involving x, y and $\frac{dy}{dx}$

If we have an equation $f(x, y, c_1, c_2) = 0$ containing two arbitrary constants c_1 and c_2 , then by differentiating this twice, we get three equations (including *f*). If the two arbitrary constants c_1 and c_2 are eliminated from these equations, we get a differential equation of second order.

Problems

Form the differential equation by eliminating arbitrary constant

```
1. y = ax + a^2
Differentiating with respect 'x'
\frac{dy}{dx} = a
```

differential equation is, $y = \frac{dy}{dx} x + \left(\frac{dx}{dt}\right)^2$

2. y = Acosx+Bsinx

Differentiating with respect 'x'

 $\frac{dy}{dx} = -Asinx + Bcosx$

Again Differentiating with respect 'x'

$$\frac{d^2y}{dx^2} = -A\cos x - B\sin x = -(A\cos x + B\sin x) = -y$$
$$\frac{d^2y}{dx^2} + y = 0$$

3. y = Acoskx + Bsinkx

Differentiating with respect 'x'

$$\frac{dy}{dx} = -Aksinx + Bkcosx$$

Again Differentiating with respect 'x'

$$\frac{d^2y}{dx^2} = -Ak^2\cos x - Bk^2\sin x = -k^2(A\cos x + B\sin x) = -k^2y$$
$$\frac{d^2y}{dx^2} + k^2y = 0$$

4. $y = A\cos 4x + B\sin 4x$

Differentiating with respect 'x'

$$\frac{dy}{dx} = -4$$
Asinx+4Bcosx

Again Differentiating with respect 'x'

$$\frac{d^2y}{dx^2} = -16A\cos - 16B\sin x = -16(A\cos x + B\sin x) = -y$$
$$\frac{d^2y}{dx^2} + 16y = 0$$
5. $y^2 = Ax^2 + Bx + C$

Differentiating with respect 'x'

$$2yy' = 2Ax + B$$

Again Differentiating with respect 'x'

$$2[yy''+y'y'] = 2A$$

Again Differentiating with respect 'x'

$$yy'''+3y''y'+2y'y'' = 0 \Rightarrow yy'''+3y''y' = 0 \text{ (or) } y\frac{d^3y}{dx^3}+3\frac{d^2y}{dx^2} \times \frac{dy}{dx}=0$$

6.
$$y=Ae^{3x} + Be^{-3x}$$

 $y' = 3Ae^{3x} - 3Be^{-3x}$
 $y'' = 9Ae^{3x} + 9Be^{-3x} = 9(Ae^{3x} + Be^{-3x})$
 $y'' = 9y \Rightarrow y'' - 9y = 0$
7. $y=Ae^{3x} + Be^{5x}$ ------ (1)
 $y' = 3Ae^{3x} + 5Be^{5x}$ ----- (2)
 $y'' = 9Ae^{3x} + 25Be^{5x}$ -----(3)

From equation (1),(2) and (3) eliminating A,B

$$\begin{vmatrix} y & 1 & 1 \\ y' & 3 & 5 \\ y'' & 9 & 25 \end{vmatrix} = 0$$

$$y'' - 8y' + 15 = 0 \quad (OR)$$

$$y = Ae^{p1x} + Be^{p2x} \text{ is a solution of } (D-p_1)(D-p_2) \text{ y} = 0$$

$$(D-3)(D-5)y = 0 \Rightarrow (D^2 - 8D + 15)y = 0 \text{ (or) } \frac{d^2y}{dx^2} - 8\frac{dy}{dx} + 15y = 0$$

8. $y = c_1 e^{-x} + c_2 e^{2x} \quad (TRB)$

$$(D-1)(D+2)y = 0$$

$$(D^2 - D+2)y = 0 \Rightarrow \frac{d^2y}{dx^2} - \frac{dy}{dx} + 2y = 0$$

9. $y = Ae^{2x} + Be^{-2x}$

$$(D+2)(D-2)y = 0$$

$$(D^2 + 4)y = 0 \Rightarrow \frac{d^2y}{dx^2} \text{ 4y} = 0$$

10. $y = e^{3x}(\text{Ccos}2x + \text{Dsin}2x)$

$$ye^{-3x} = \text{Ccos}2x + \text{Dsin}2x - (1)$$

Differentiating with respect 'x'

$$y(-3e^{-3x}) + e^{-3x}y' = -2\text{Csin}2x + 2\text{Dcos}2x$$

$$e^{-3x} [-3y + y'] = -2\text{Csin}2x + 2\text{Dcos}2x$$

Again Differentiating with respect 'x'

$$e^{-3x}(-3y' + y'') - 3(3y + y') e^{-3x} = -4\text{Ccos}2x - 4\text{Dsin}2x = -4 (\text{Ccos}2x + \text{Dsin}2x)$$

$$e^{-3x} [y'' - 6y' + 9y] = -4ye^{-3x} \Rightarrow y'' - 6y' + 13y = 0 \quad (OR)$$

If $p = \alpha \pm i\beta$, then Differential equation,

 $(D^2-(sum of roots)D+Product of roots)y = 0$

 $(D^{2}-(3+i2+3-i2)D+(3+i2)(3-i2))y = 0$ $(D^{2}-6D+13)y = 0$ 11.y = (Ax+B)e^{3x} Differential equation is,(D-3)(D-3) y = 0 $(D^{2}-9)y=0$

Solutions of first order and first degree equations:

- (i) Variable separable method
- (ii) Homogeneous differential equation
- (iii) Linear differential equation

Variable separable :

Variables of a differential equation are to be rearranged in the form

$$f_1(x) g_2(y) dx + f_2(x) g_1(y) dy = 0$$

i.e., the equation can be written as

 $f_2(x)g_1(y)dy = -f_1(x) g_2(y) dx$ $\frac{g_1(y)}{g_2(y)}dy = \frac{f_1(x)}{f_2(x)}dx \text{ and integrating on both sides}$

$$\int \frac{g_1(y)}{g_2(y)} dy = \int \frac{f_1(x)}{f_2(x)} dx$$

$$1. \ \frac{dy}{dx} + \left(\frac{1-y^2}{1-x^2}\right)^{\frac{1}{2}} = 0$$

$$\frac{dy}{\sqrt{1-y^2}} = \frac{dx}{\sqrt{1-x^2}}$$

integrating $\int \frac{dy}{\sqrt{1-y^2}} = \int \frac{dx}{\sqrt{1-x^2}}$

$$\sin^{-1}y - \sin^{-1}x = c$$

2. Solve
$$\frac{dy}{dx} = y^2 x^3$$

 $\frac{dy}{y^2} = \frac{dx}{x^3}$

integrating $\int \frac{dy}{y^2} = \int x^3 dx$

$$-\frac{1}{y} = \frac{x^4}{4} + c$$

3. Solve $\frac{dy}{dx} = \frac{y+2}{x-1}$

$$\frac{dy}{y+2} = \frac{dx}{x-1}$$
integrating $\int \frac{dy}{y+2} = \int \frac{dx}{x-1}$

$$\log(y+2) = \log(x-1) + \log c$$

$$\log(\frac{y+2}{x-1}) = \log c$$

$$\frac{y+2}{x-1} = c$$
4. Solve $e^x \operatorname{tanydx} + (1-e^x) \sec^2 y dy = 0$

$$\frac{e^x}{1-e^x} dx = -\frac{\sec^2 y dy}{\tan y}$$
integrating $\int \frac{e^x}{1-e^x} dx = -\int \frac{\sec^2 y dy}{\tan y}$

$$-\log(1-e^x) = -\log \tan y + \log c$$

$$\log(\frac{\tan y}{1-e^x}) = \log c$$

$$\frac{\tan y}{1-e^x} = \log c$$
5. Solve $x\sqrt{1+y^2} + y\sqrt{1+x^2} \frac{dy}{dx}$

$$\frac{xdx}{\sqrt{1+x^2}} = -\int \frac{ydy}{\sqrt{1+y^2}}$$
integrating $\int \frac{xdx}{\sqrt{1+x^2}} = -\int \frac{ydy}{\sqrt{1+y^2}}$

$$x 2 \Rightarrow \int \frac{2xdx}{\sqrt{1+x^2}} = -\int \frac{2ydy}{\sqrt{1+y^2}}$$

$$2\sqrt{1+x^2} = -2\sqrt{1+y^2} + c$$
6. Solve $\sqrt{1-x^2} \sin^{-1}x dy + y dx = 0$

$$\frac{dy}{y} = -\frac{dx}{\sin^{-1}x\sqrt{1-x^2}}$$
integrating $\int \frac{dy}{y} = -\int \frac{dx}{\sin^{-1}x\sqrt{1-x^2}}$

$$\int \frac{dy}{y} = -\int \frac{du}{u} \quad ; \text{ let } u = \sin^{-1}x , \text{ du} = \frac{1}{\sqrt{1-x^2}} dx$$

$$\log y = -\log u + \log c$$

$$yu = c \Rightarrow y \sin^{-1} x = c$$
7. Solve $ydx - xdy + 3x^2y^2e^{x^3} dx = 0$

$$\frac{ydx - xdy}{y^2} + 3x^2e^{x^3} dx = 0$$

integrating $\int d(\frac{x}{y}) + \int 3x^2 e^{x^3} dx = 0$ $\frac{x}{y} + e^{x^3} = c$

Homogeneous Differential Equations

A differential equation of the form $\frac{dy}{dx} = \frac{f(x,y)}{g(x,y)}$ OR $\frac{dy}{dx} = f(\frac{y}{x})$ is called a Homogeneous equation. Where f(x,y) and g(x,y) are homogeneous equation of the same degree.

Ex:
$$\frac{dy}{dx} = \frac{2xy}{x^2 + y^2}$$

In such case, $\mathbf{y} = \mathbf{v}\mathbf{x} \Rightarrow \frac{dy}{dx} = \mathbf{v} + \mathbf{x}\frac{dv}{dx}$

1. Solve
$$\frac{dy}{dx} = \frac{y}{x} + tan\frac{y}{x}$$

Put $y = vx \Rightarrow \frac{dy}{dx} = v + x\frac{dv}{dx}$
 $v + x\frac{dv}{dx} = v + tanv$
 $x\frac{dv}{dx} = tanv$
 $\frac{dv}{tanv} = \frac{dx}{x}$

integrating
$$\int \frac{dv}{tanv} = \int \frac{dx}{x}$$

$$logsinv = logx + logc$$

 $\sin v = xc$, put $v = \frac{y}{x}$

$$\sin\frac{y}{x} = xc$$

2. Solve
$$\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}$$

Put $y = vx \Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$

$$\mathbf{v} + \mathbf{x}\frac{d\boldsymbol{v}}{dx} + \mathbf{v} = \boldsymbol{v}^2$$

$$\begin{aligned} \mathbf{x} \frac{dv}{dx} &= v^2 \cdot 2\mathbf{v} \\ \frac{dv}{v^2 - 2v} &= \frac{dx}{x} \\ \frac{dv}{v(v-2)} &= \frac{dx}{x} \quad \left\{ \frac{1}{v(v-2)} = \frac{A}{v} + \frac{B}{v-2} \right\}, \ \mathbf{A} &= -\frac{1}{2} \ \mathbf{B} &= \frac{1}{2} \\ -\frac{1}{2} \int \frac{dv}{v} + \frac{1}{2} \int \frac{dv}{v-2} &= \int \frac{dx}{x} \\ -\frac{1}{2} \log v + \frac{1}{2} \log \frac{dv}{v} = 2 \right] &= \log x + \log c \end{aligned}$$

$$\frac{v-2}{v} = x^2 c \text{, put } v = \frac{y}{x}$$

$$v-2 = vx^2 c$$

$$\frac{y}{x} - 2 = \frac{y}{x} \times x^2 c$$

$$y - 2x = yx^2 c$$
On putting $y = vx$, the homogenous differential equation $x^2 dy + y(x + y) dx = 0$
Becomes $xdv + (2v+v^2)dx = 0$
Solve $xdy - ydx = \sqrt{x^2 + y^2} dx$
Ans: $xdv - \sqrt{1 + v^2} dx = 0$
Solve. $\frac{dy}{dx} = \frac{y^3 + 3x^2y}{x^3 + 3x - y^2}$
Ans: $\frac{dx}{x} = \frac{(1+3v^2)}{2v(v^2-1)} dv$

Linear differential equations

3.

4.

5.

The linear equation in y of the first order is of the form dy/dx +Px = Q(x), where P, Q are functions in x
 The general solution is y(I.F) = ∫ Q (I.F)dx + c
 Where Integral Factor(I.F) = e^{∫ Pdx}

Where Integral Factor(I.F) =
$$e^{\int Pdy}$$

Note :

Integral factor of D.E is (I.F)

Then,
$$P = \frac{(I.F)}{I.F}$$

1. Find the integral factor of $(1 - x^2)\frac{dy}{dx} + 2xy = x\sqrt{1 - x^2}$

$$\div (1 - x^2) \Rightarrow \frac{dy}{dx} + \frac{2x}{(1 - x^2)}y = \frac{x\sqrt{1 - x^2}}{(1 - x^2)}$$

$$P = \frac{2x}{(1 - x^2)}, Q = \frac{x\sqrt{1 - x^2}}{(1 - x^2)}$$

$$I.F = e^{\int Pdx} = e^{\int \frac{2x}{(1 - x^2)}dx} = e^{-\log[(1 - x^2)]} = \frac{1}{(1 - x^2)}$$

2. Find I.F of $\frac{dy}{dx}$ +ycotx = sin2x I.F = $e^{\int Pdx} = e^{\int cotdx} = e^{\log \frac{\log \log nx}{\log \log \log nx}} = sinx$

3. Find I.F of
$$(1+x^2)\frac{dy}{dx} + y = e^{\tan^{-1}x}$$

$$\div (1 + x^2) \Rightarrow \frac{dy}{dx} + \frac{1}{(1 + x^2)}y = \frac{e^{\tan^{-1}x}}{(1 + x^2)}$$

I.F =
$$e^{\int \frac{1}{(1+x^2)} dx} = e^{\tan^{-1}x}$$

4. Find the solution of $\frac{dy}{dx} + \frac{2x}{(1+x^2)}y = 0$ I.F = $e^{\int \frac{2x}{(1+x^2)}dx} = e^{\log \frac{2}{2}(1+x^2)} = (1+x^2)$ The solution is, $y(I.F) = \int Q (I.F)dx + c$ $y(1+x^2) = \int 0dx + c$

 $y(1+x^2) = c$

- 5. If the integral factor of D.E is secx, find P(x) $P(x) = \frac{(I.F)'}{I.F} = \frac{secxtanx}{secx} = tanx$
- 6. If e^x is an integral factor of D.E. Find P(x) $P(x) = \frac{(I.F)'}{I.F} = \frac{e^x}{e^x} = 1$ 7. If $e^{f(x)}$ is IF of D.E, then P(x) = f'(x)

Exercise

 $\frac{1}{(1-n)}\frac{dz}{dx} = y^{-n}\frac{dy}{dx}$

1. Solve $\frac{dy}{dx} + y = x$, Ans: $e^{x}(y - x + 1) = c$ 2. Find IF of $\frac{dy}{dx} + xy = x$, ans: $e^{\frac{x^{2}}{2}}$ 3. Find IF of $\frac{dy}{dx} + \frac{y}{x} = \sin(x^{2})$ Ans : x 4. Solve $\frac{dy}{dx} + 2y$ tanx = sinx, Ans: $y = \cos x + C\cos^{2} x$ 5. Find I.F of $\frac{dy}{dx} - 3y = 6$, Ans: $e^{-3x^{2}}$ 6. Find the solution of $\frac{dy}{dx} + 2y - 3 = 0$, Ans: $ye^{2x} = \frac{3e^{2x}}{2} + c$ **Bernoulli's equation**

An equation of the form $\frac{dy}{dx} + py = Qy^n$, Where P,Q are functions in x only. $\div y^n \Rightarrow y^{-n} \frac{dy}{dx} + Py^{1-n} = Q$ -----(1) Put $z = y^{1-n}$ $\frac{dz}{dx} = (1-n)y^{-n} \frac{dy}{dx}$

The general solution is, $ze^{\int pdx} = \int Qe^{\int Pdx} dx + c$

$$Z(x+1) = \int \frac{2}{(x+1)} (x+1) \, dx + c$$

$$Z(x+1) = 2x + c$$

2. Find the I.F of
$$\frac{dy}{dx}(x^2y^3 + xy) = 1$$

 $x^2y^3 + xy = \frac{dx}{dy}$
 $\div x^2 \Rightarrow \frac{1}{x^2}\frac{dx}{dy}\frac{y}{x} = y^3$ -----(1)
 $put \ z = -\frac{1}{x}$
 $\frac{dz}{dy} = \frac{1}{x^2}\frac{dx}{dy}$
 $(1) \Rightarrow \frac{dz}{dy} + zy = y^3$
 $(2)I.F = e^{\int pdy} = e^{\int ydy} = e^{\frac{y^2}{2}}$

Exercise

- 1. Find I F of $\frac{dy}{dx} + xtany = x^3$, Ans: $e^{\frac{x^2}{2}}$
- 2. Find the I.F of $\frac{dy}{dx} + y\cos x = y^n \sin 2x$, Ans: I F = $e^{-(1-n)\sin x}$

Equation of the first order with higher degree

We shall denote $\frac{dy}{dx}$ by 'p'

The D.E of the first order and nth degree, $p^n + A_1 p^{n-1} + A_2 p^{n-2A} + \dots + A_n = 0$

Where $A_1, A_2, A_3, \dots \dots A_n$ denote functions of x and y

In this case resolve the given equation into factor of first degree,

$$(p-R_1) (p-R_2) (p-R_3) \dots (p-R_n) = 0$$

This implies, $p = R_1, p = R_2, p = R_3, \dots p = R_n$
Solve the equation , then we get,
 $\varphi_1(x, y, c_1) = 0, \varphi_2(x, y, c_2) = 0, \varphi_3(x, y, c_3) = 0, \dots, \varphi_n(x, y, c_n) = 0,$
Where $c_1, c_2, c_3, \dots, c_n$ are constant
The solution of D.E is, $\varphi_1(x, y, c_1) \varphi_2(x, y, c_2) \varphi_3(x, y, c_3) \dots, \varphi_n(x, y, c_n) = 0$
1. Solve, $p^2 - 5p + 6 = 0$ (Or) $(\frac{dy}{dx})^2 - 5\frac{dy}{dx} + 6 = 0$
 $\Rightarrow (p-2)(p-3)=0$
 $p = 2, p = 3$
 $\frac{dy}{dx} = 2, \frac{dy}{dx} = 3$
 $dy = 2dx$, $dy = 3dx$
Integrating, $y = 2x+c_1, y = 3x+c_2$
 $y - 2x - c_1 = 0, y - 3x - c_2 = 0$
The solution is, $(y - 2x - c_1)(y - 3x - c_2) = 0$
2. Solve, $p(p-y) = x(x+y)$
 $p^2 - py - x^2 - xy = 0$
 $p^2 - x^2 - y(x + p) = 0$
 $(p+x)(p-x-y) = 0$
 $P = -x, p = x+y$
 $\frac{dy}{dx} = -x \Rightarrow y = \frac{x^2}{2} + c_1 \Rightarrow (2y+x^2 - c_1) = 0$
 $\frac{dy}{dx} = x+y \Rightarrow \frac{dy}{dx} - y = x$

 $I.F = e^{\int -dx} = e^{-x}$

The solution, $ye^{-x} = \int x e^{-x} dx + c_2$ $ye^{-x} = -xe^{-x} - e^{-x} + c_2 \Rightarrow (y+x+1 - c_2e^{-x}) = 0$ the solution is, $\Rightarrow (2y+x^2 - c_1)(y+x+1 - c_2e^{-x}) = 0$

3. Solve,
$$x^2p^2 + 3xyp + 2y^2 = 0$$
 (TRB)

$$x^{2}p^{2} + 2xyp + 3xyp + 2y^{2} = 0$$

$$xp(xp + 2y) + y(xp + 2y) = 0$$

$$(px + y)(xp + 2y) = 0$$

$$Px = -y, xp = -2y$$

$$\frac{dy}{dx}x = -y \Rightarrow \log y = -\log x + \log c_{1} \Rightarrow (xy - c_{1}) = 0$$

$$xp = -2y \Rightarrow \frac{dy}{dx}x = -2y \Rightarrow \log y = -2\log x + \log c_{1} \Rightarrow (yx^{2} - c_{2}) = 0$$

The solution is, $(xy - c_{1})(yx^{2} - c_{2}) = 0$

Exercise

- 4. Solve, $p^2 7p + 10 = 0$, Ans: $(y 2x c_1)(y 5x c_2) = 0$
- 5. Solve, $p^2 7p + 12 = 0$, Ans: $(y 42x c_1)(y 3x c_2) = 0$]

DIFFERENTIAL EQUATIONS TEST -1

1. What is the order and degree of the differential equation $\frac{d^2y}{dx^2} + \sqrt{1 + (\frac{dy}{dx})^2} = 0$

- (a) First order, second order (b) second order, first degree
- (c) first order, first degree

(d) second order, second degree

2. The differential equation derive from $y = Ae^{2x} + Be^{-2x}$ have the order, when A,B are constants

(a) 3 (b) 2 (c) 1 (d) None of these 3. The differential equation of $y = Ae^{3x} + Be^{5x}$ is (a) y'' - 8y + 15y = 0 (b) y'' + 8y + 15y = 0 (c) y'' + 8y = 0 (d) y'' = 0

4. The differential equation of $x = A\cos(pt-\alpha)$ is (a) $\frac{d^2x}{dt^2} = 0$ (b) $\frac{d^2x}{dt^2} = -p^2 x$ (c) $\frac{d^2x}{dt^2} = 0$ (d) $\frac{dx}{dt} = -px$

5. The solution of $\frac{dy}{dx} = 2xy$ is (a) $c = \log y + x$ (b) $c = \log y - x^2$ (c) c = xy (d) $c = y \log x$

6. The degree of the differential equation of $\left(\frac{d^2y}{dx^2}\right)^3 + \left(\frac{dy}{dx}\right)^2 + sinx + 1 = 0$ is (a) 1 (b) 2 (c) 3 (d) 4

7. The number of arbitrary constants in the general solution of differential equation of fouth order is

(a) 1 (b)2 (c) 3 (d) 4

0. IT noniogeneous	differential equation o	f the form $\frac{dx}{dy} = f(\frac{x}{y})$ c	an be solve by making
the substitution			
(a) $y = vx$	(b) $v = yx$	(c) $\mathbf{x} = \mathbf{v}\mathbf{y}$	(d) $\mathbf{x} = \mathbf{v}$
9. Order and degree	e of differential equation	on are always	
(a) positive integer	(b) Negative in	nteger (c) integer	(d) None of these
10. The differential e	equation of $y = Acosx$	– Bsinx is	
(a) $y'' - y = 0$	(b) $y'' + y = 0$	(c) $y' + y = 0$	(d) $y'' + x y = 0$
	equation of $y = Ae^{x} +$		
	(b) $y'' + y = 3x$		(d) $y'' + y = 2x$
12. Order and degree of differential equation $\left(\frac{d^2y}{dx^2}\right)^{\frac{1}{2}} = \left(x - \frac{dy}{dx}\right)^{\frac{1}{3}}$			
(a) (3,2)		(c) (2,1)	(d) (2,3)
13. The solution of the differential equation $\frac{dy}{dx} = \frac{y+1}{x-1}$ is			
		(c) $c = (y+1)(x-1)$	(d) $c(x-1) = y$
14. The general solution of differential equation $\frac{dy}{dx} = y^2 x^3$			
(a) $y = x^3 + k$	(b) $y = x^4 + k$	(c) $y = \frac{-4}{4}$	(d) y =
$x^{3}+e^{2x}+k$	× / •	x^4+k	× / •
	ne differential equation	$n\frac{dy}{dx} = e^{2x-y} + x^3 e^{-y}$	is
(a) $x(2x-y) + y(3-y) = c$		(b) $4e^y = 2e^{2x} + x^4 + c$	
(c) $2e^{2x} + e^y = c$		(d) $2e^{2x} + e^y + x^4$	= c
	tion of differential equ	(d) $2e^{2x} + e^y + x^4$ ation sinxcosydx – cos	
	-		xsinydy = 0
16.The general solut (a) sinx = xsecy	(b) $x \sec x = \csc y$	ation sinxcosydx – cos	xsinydy = 0 (d) secx = scey + c
16. The general solut (a) sinx = xsecy 17. The particular sol (a) $x = ye^{x}-e^{x}+3$	(b) xsecx = csecy lution of $y' = xe^x$ with (b) $y = xe^x - e^x + 1$	ation sinxcosydx – cos (c) secx = cscey initial condition y = 3 (c) y =xe ^x -e ^x +3	xsinydy = 0 (d) secx = scey + c when x = 1 (d) y = e ^x (x+1) + 3
16. The general solut (a) sinx = xsecy 17. The particular sol (a) $x = ye^{x}-e^{x}+3$	(b) xsecx = csecy lution of $y' = xe^x$ with (b) $y = xe^x - e^x + 1$	ation sinxcosydx – cos (c) secx = cscey initial condition y = 3	xsinydy = 0 (d) secx = scey + c when x = 1 (d) y = e ^x (x+1) + 3
16. The general solut (a) sinx = xsecy 17. The particular solut (a) $x = ye^{x}-e^{x}+3$ 18. A curve passes the equation of the curve for the	(b) xsecx = csecy lution of $y' = xe^x$ with (b) $y = xe^x - e^x + 1$ prough the point (0,0) for urve is	ation sinxcosydx – cos (c) secx = cscey initial condition y = 3 (c) y =xe ^x -e ^x +3 with differential equati	xsinydy = 0 (d) secx = scey + c when x = 1 (d) y = $e^{x}(x+1) + 3$ on y' = e^{3x-2y} , then the
16. The general solut (a) sinx = xsecy 17. The particular solut (a) $x = ye^{x} - e^{x} + 3$ 18. A curve passes the equation of the curve (a) $3e^{x} = ye^{3x} + 1$	(b) $xsecx = csecy$ lution of $y' = xe^x$ with (b) $y = xe^x - e^x + 1$ prough the point (0,0)	ation sinxcosydx – cos (c) secx = cscey initial condition y = 3 (c) y =xe ^x -e ^x +3 with differential equati	xsinydy = 0 (d) secx = scey + c when x = 1 (d) y = e ^x (x+1) + 3
16. The general solut (a) sinx = xsecy 17. The particular solut (a) $x = ye^{x}-e^{x}+3$ 18. A curve passes the equation of the curve (a) $3e^{x} = ye^{3x}+1$ + 2	(b) xsecx = csecy lution of $y' = xe^x$ with (b) $y = xe^x - e^x + 1$ prough the point (0,0) furve is (b) $2e^{2y} = 3e^{3x} + 1$	ation sinxcosydx – cos (c) secx = cscey initial condition y = 3 (c) y =xe ^x -e ^x +3 with differential equati (c) $3e^{2y} = 2e^{3x}$	xsinydy = 0 (d) secx = scey + c when x = 1 (d) y = $e^{x}(x+1) + 3$ on y' = e^{3x-2y} , then the
16. The general solut (a) sinx = xsecy 17. The particular solut (a) $x = ye^{x}-e^{x}+3$ 18. A curve passes the equation of the curve (a) $3e^{x} = ye^{3x}+1$ + 2	(b) xsecx = csecy lution of $y' = xe^x$ with (b) $y = xe^x - e^x + 1$ prough the point (0,0) for urve is	ation sinxcosydx – cos (c) secx = cscey initial condition y = 3 (c) y =xe ^x -e ^x +3 with differential equati (c) $3e^{2y} = 2e^{3x}$	xsinydy = 0 (d) secx = scey + c when x = 1 (d) y = $e^{x}(x+1) + 3$ on y' = e^{3x-2y} , then the
16. The general solut (a) sinx = xsecy 17. The particular solut (a) $x = ye^{x} - e^{x} + 3$ 18. A curve passes the equation of the curve (a) $3e^{x} = ye^{3x} + 1$ + 2 19. The general solut	(b) xsecx = csecy lution of $y' = xe^x$ with (b) $y = xe^x - e^x + 1$ nrough the point (0,0) urve is (b) $2e^{2y} = 3e^{3x} + 1$ tion of differential equation	ation sinxcosydx – cos (c) secx = cscey initial condition y = 3 (c) y =xe ^x -e ^x +3 with differential equati (c) $3e^{2y} = 2e^{3x}$ ation $\frac{dy}{dx} = e^{x}$	xsinydy = 0 (d) secx = scey + c when x = 1 (d) y = $e^{x}(x+1) + 3$ on y' = e^{3x-2y} , then the
16. The general solut (a) sinx = xsecy 17. The particular solut (a) $x = ye^{x}-e^{x}+3$ 18. A curve passes the equation of the curve (a) $3e^{x} = ye^{3x}+1$ +2 19. The general solut (a) $y = e^{x}+c$	(b) xsecx = csecy lution of $y' = xe^x$ with (b) $y = xe^x - e^x + 1$ nrough the point (0,0) urve is (b) $2e^{2y} = 3e^{3x} + 1$ tion of differential equ (b) $y = e^{-x} + c$	ation sinxcosydx – cos (c) secx = cscey initial condition y = 3 (c) y =xe ^x -e ^x +3 with differential equati (c) $3e^{2y} = 2e^{3x}$ ation $\frac{dy}{dx} = e^{x}$	xsinydy = 0 (d) secx = scey + c when x = 1 (d) y = $e^{x}(x+1) + 3$ on y' = e^{3x-2y} , then the (d) $3e^{2y} = 2e^{3x}$
16. The general solut (a) sinx = xsecy 17. The particular solut (a) $x = ye^{x} - e^{x} + 3$ 18. A curve passes the equation of the curve (a) $3e^{x} = ye^{3x} + 1$ + 2 19. The general solut (a) $y = e^{x} + c$ 20. The differential e	(b) xsecx = csecy lution of $y' = xe^x$ with (b) $y = xe^x - e^x + 1$ nrough the point (0,0) urve is (b) $2e^{2y} = 3e^{3x} + 1$ tion of differential equ (b) $y = e^{-x} + c$	ation sinxcosydx – cos (c) secx = cscey initial condition y = 3 (c) y =xe ^x -e ^x +3 with differential equati (c) $3e^{2y} = 2e^{3x}$ ation $\frac{dy}{dx} = e^{x}$ (c) y =-e ^x +c arabolas $y^{2} = 4ax$ is	xsinydy = 0 (d) secx = scey + c when x = 1 (d) y = $e^{x}(x+1) + 3$ on y' = e^{3x-2y} , then the (d) $3e^{2y} = 2e^{3x}$
16. The general solut (a) sinx = xsecy 17. The particular solut (a) x = ye ^x -e ^x +3 18. A curve passes the equation of the curve (a) 3e ^x = ye ^{3x} +1 + 2 19. The general solut (a) y = e ^x +c 20. The differential end (a) $\frac{dy}{dx} = 4 \left(\frac{dy}{dx}\right)^2$	(b) xsecx = csecy lution of $y' = xe^x$ with (b) $y = xe^x - e^x + 1$ nrough the point (0,0) for urve is (b) $2e^{2y} = 3e^{3x} + 1$ tion of differential equ (b) $y = e^{-x} + c$ eqution of the family p	ation sinxcosydx – cos (c) secx = cscey initial condition y = 3 (c) y =xe ^x -e ^x +3 with differential equati (c) $3e^{2y} = 2e^{3x}$ ation $\frac{dy}{dx} = e^{x}$ (c) y =-e ^x +c arabolas $y^{2} = 4ax$ is (c) $\frac{d^{2}y}{dx^{2}} = 4$	xsinydy = 0 (d) secx = scey + c when x = 1 (d) y = $e^{x}(x+1) + 3$ on y' = e^{3x-2y} , then the (d) $3e^{2y} = 2e^{3x}$ (d) x = logy+c
16. The general solut (a) sinx = xsecy 17. The particular solut (a) x = ye ^x -e ^x +3 18. A curve passes the equation of the curve (a) 3e ^x = ye ^{3x} +1 + 2 19. The general solut (a) y = e ^x +c 20. The differential end (a) $\frac{dy}{dx} = 4 \left(\frac{dy}{dx}\right)^2$ 21. The differential end	(b) xsecx = csecy lution of $y' = xe^x$ with (b) $y = xe^x - e^x + 1$ nrough the point (0,0) for urve is (b) $2e^{2y} = 3e^{3x} + 1$ tion of differential equ (b) $y = e^{-x} + c$ eqution of the family p (b) $y = 2x\frac{dy}{dx}$	ation sinxcosydx – cos (c) secx = cscey initial condition y = 3 (c) y =xe ^x -e ^x +3 with differential equati (c) $3e^{2y} = 2e^{3x}$ ation $\frac{dy}{dx} = e^{x}$ (c) $y = -e^{x}+c$ arabolas $y^{2} = 4ax$ is (c) $\frac{d^{2}y}{dx^{2}} = 4$ f straight lines is	xsinydy = 0 (d) secx = scey + c when x = 1 (d) y = $e^{x}(x+1) + 3$ on y' = e^{3x-2y} , then the (d) $3e^{2y} = 2e^{3x}$ (d) x = logy+c
16. The general solut (a) sinx = xsecy 17. The particular solut (a) x = ye ^x -e ^x +3 18. A curve passes the equation of the curve (a) 3e ^x = ye ^{3x} +1 + 2 19. The general solut (a) y = e ^x +c 20. The differential end (a) $\frac{dy}{dx} = 4 \left(\frac{dy}{dx}\right)^2$ 21. The differential end (a) $\frac{dy}{dx} = 4 \left(\frac{dy}{dx}\right)^2$	(b) xsecx = csecy lution of $y' = xe^x$ with (b) $y = xe^x - e^x + 1$ nrough the point (0,0) furve is (b) $2e^{2y} = 3e^{3x} + 1$ tion of differential equ (b) $y = e^{-x} + c$ eqution of the family p (b) $y = 2x\frac{dy}{dx}$ eqution of the family o (b) $y = 2x\frac{dy}{dx}$	ation sinxcosydx – cos (c) secx = cscey initial condition y = 3 (c) y =xe ^x -e ^x +3 with differential equati (c) $3e^{2y} = 2e^{3x}$ ation $\frac{dy}{dx} = e^{x}$ (c) $y = -e^{x}+c$ arabolas $y^{2} = 4ax$ is (c) $\frac{d^{2}y}{dx^{2}} = 4$ f straight lines is	xsinydy = 0 (d) secx = scey + c when x = 1 (d) y = $e^{x}(x+1) + 3$ on y' = e^{3x-2y} , then the (d) $3e^{2y} = 2e^{3x}$ (d) x = logy+c (d) none of these (d) None of these

23.Differential equation of the family of circles which passes through the origin & whose centers are on the x-axis is

(a)
$$2xy\frac{dy}{dx} + x^2 + y^2 = 0$$
 (b) $2xy\frac{dy}{dx} + x^2 - y^2 = 0$ (c) $x\frac{dy}{dx} + x^2 - y^2 = 0$ (d) $2y\frac{dy}{dx} + x^2 - y^2 = 0$
24. The solution of $(1 + x^2)dy = (1 + y^2)dx$ is
(a) $tan^{-1}y - tan^{-1}x = tan^{-1}c$ (b) $tan^{-1}y + tan^{-1}x = tan^{-1}c$
(c) $tan^{-1}x - tan^{-1}y = tan^{-1}c$ (d) $tan^{-1}(\frac{y}{x}) = tan^{-1}c$
25. Solution of $(xy^2 + x)dx + (xy^2 + y)dy = 0is$
(a) $(x^2 + 1) = c(y^2 + 1)$ (b) $(x^2 - 1) = c(y^2 - 1)$
(c) $(x^2 + 1)(y^2 + 1) = c$ (d) $(x^2 - 1)(y^2 - 1) = c$