TRB MATHEMATICS

DIFFERENTAL EQUATIONS

Unit-VIII - Differential Equations

Linear differential equation - constant co-efficients - Existence of solutions Wrongskian - independence of solutions - Initial value problems for second order equations Integration in series - Bessel's equation - Legendre and Hermite Polynomials - elementary properties - Total differential equations - first order partial differential equation - Charpits method

DIFFERENTIAL EQUATIONS

Definition:

An equation involving one dependent variable and its derivatives with respect to one or more independent variables is called a Differential Equation.
Differential equation are of two types.
(i) Ordinary Differential equation
(ii) Partial Differential equation

Ordinary Differential equation

An ordinary differential equation is a differential equation in
which a single independent variable enters either explicitly or implicitly.

$$
\text { (i) } \frac{d y}{d x}=x+5 \text { (ii) }\left(y^{\prime}\right)^{2}+\left(y^{\prime}\right)^{3}+3 y=x^{2} \text { (iii) } \frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+3 y=0
$$

Partial Differential equation

A partial differential equation is one ine which at least two independent variable occur. Example :

$$
\mathrm{x} \frac{\partial z}{\partial x}+\mathrm{y} \frac{\partial z}{\partial y}=\mathrm{z}
$$

Order

The order of a differential equation is the order of the highest differential coefficient degree

The degree of the differential equation is the degree of the highest order derivative after removing radicals and fractions
Problems
Find the oder and degree of the differential equation

1. $\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3}=\left(\frac{d^{2} y}{d x^{2}}\right)^{2}$
order $=2$, degree $=2$
2. $\cos x \frac{d^{2} y}{d x^{2}}+\sin x\left(\frac{d y}{d x}\right)^{2}+8 y=\tan x$
order $=2$, degree $=1$
3. $\frac{d^{2} y}{d x^{2}}+\sqrt{1+\left(\frac{d y}{d x}\right)^{3}}=0$

$$
\text { order }=2, \text { degree }=2
$$

4. $\frac{d^{2} y}{d x^{2}}=\left[4+\left(\frac{d y}{d x}\right)^{2}\right]^{\frac{3}{4}}$
order $=2$, degree $=4$
5. $\frac{d^{2} y}{d x^{2}}+x=\sqrt{y+\left(\frac{d y}{d x}\right)}$

$$
\text { order }=1, \text { degree }=2
$$

6. $\left(1+y^{\prime}\right)^{2}=y^{\prime 2}$
order $=1$, degree $=1$
7. $\mathrm{y}=4 \frac{d y}{d x}+3 \mathrm{x} \frac{d x}{d y}$
order $=1$, degree $=2$
8. $\sin x(d x+d y)=\cos x(d x-d y)$
order $=1$, degree $=1$
9. $\frac{d^{3} y}{d x^{3}}+\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+\left(\frac{d y}{d x}\right)^{5}+\mathrm{y}=7$
order $=3$, degree $=1$
10. $\frac{d^{4} x}{d t^{4}}+\frac{d^{2} x}{d t^{2}}+\left(\frac{d x}{d t}\right)^{5}=e^{t}$
order $=4$, degree $=1$

Formation of differential equations :

Let $f\left(x, y, c_{1}\right)=0$ be an equation containing x, y and one arbitrary constant c_{1}. If c_{1} is eliminated by differentiating $f\left(x, y, c_{1}\right)=0$ with respect to the independent variable once, we get a relation involving x, y and $\frac{d y}{d x}$

If we have an equation $f\left(x, y, c_{1}, c_{2}\right)=0$ containing two arbitrary constants $c 1$ and c_{2}, then by differentiating this twice, we get three equations (including f). If the two arbitrary constants c_{1} and c_{2} are eliminated from these equations, we get a differential equation of second order.

Problems

Form the differential equation by eliminating arbitrary constant

1. $\mathrm{y}=\mathrm{ax}+a^{2}$

Differentiating with respect ' x '

$$
\frac{d y}{d x}=\mathrm{a}
$$

differential equation is, $\mathrm{y}=\frac{d y}{d x} \mathrm{x}+\left(\frac{d x}{d t}\right)^{2}$
2. $y=A \cos x+B \sin x$

Differentiating with respect ' x '

$$
\frac{d y}{d x}=-A \sin x+B \cos x
$$

Again Differentiating with respect ' x '

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=-\mathrm{A} \cos \mathrm{x}-\mathrm{B} \sin \mathrm{x}=-(\mathrm{A} \cos \mathrm{x}+\mathrm{B} \sin \mathrm{x})=-\mathrm{y} \\
& \frac{d^{2} y}{d x^{2}}+\mathrm{y}=0
\end{aligned}
$$

3. $\mathrm{y}=\mathrm{A} \cos \mathrm{kx}+\mathrm{B} \operatorname{sinkx}$

Differentiating with respect ' x '

$$
\frac{d y}{d x}=-\mathrm{Ak} \sin \mathrm{x}+\mathrm{Bk} \cos \mathrm{x}
$$

Again Differentiating with respect ' x '

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=-A k^{2} \cos x-B k^{2} \sin x=-k^{2}(A \cos x+B \sin x)=-k^{2} y \\
& \frac{d^{2} y}{d x^{2}}+\mathrm{k}^{2} y=0
\end{aligned}
$$

4. $\mathrm{y}=\mathrm{A} \cos 4 \mathrm{x}+\mathrm{B} \sin 4 \mathrm{x}$

Differentiating with respect ' x '

$$
\frac{d y}{d x}=-4 A \sin x+4 B \cos x
$$

Again Differentiating with respect ' x '

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=-16 A \cos x-16 B \sin x=-16(A \cos x+B \sin x)=-y \\
& \frac{d^{2} y}{d x^{2}}+16 y=0
\end{aligned}
$$

5. $y^{2}=A x^{2}+B x+C$

Differentiating with respect ' x '
$2 y^{\prime}=2 A x+B$
Again Differentiating with respect ' x '
$2\left[y y^{\prime}+y^{\prime} y^{\prime}\right]=2 \mathrm{~A}$
Again Differentiating with respect ' x '

$$
y y^{\prime \prime}+3 y^{\prime \prime} y^{\prime}+2 y^{\prime} y^{\prime \prime}=0 \Rightarrow y y^{\prime \prime}+3 y^{\prime \prime}{ }^{\prime}=0 \text { (or) } y \frac{d^{3} y}{d x^{3}}+3 \frac{d^{2} y}{d x^{2}} \times \frac{d y}{d x}=0
$$

6. $\mathrm{y}=\mathrm{A} e^{3 x}+B e^{-3 x}$

$$
\begin{aligned}
& \mathrm{y}^{\prime}=3 \mathrm{~A} e^{3 x}-3 B e^{-3 x} \\
& \mathrm{y}^{\prime \prime}=9 \mathrm{~A} e^{3 x}+9 B e^{-3 x}=9\left(\mathrm{~A} e^{3 x}+B e^{-3 x}\right) \\
& \mathrm{y}^{\prime \prime}=9 \mathrm{y} \Rightarrow \mathbf{y}^{\prime},-9 \mathbf{y}=\mathbf{0}
\end{aligned}
$$

7. $\mathrm{y}=\mathrm{A} e^{3 x}+B e^{5 x}$

$$
\begin{align*}
& y^{\prime}=3 \mathrm{~A} e^{3 x}+5 B e^{5 x} \tag{1}\\
& \mathrm{y}^{\prime \prime}=9 \mathrm{~A} e^{3 x}+25 B e^{5 x} \tag{2}
\end{align*}
$$

From equation (1),(2) and (3) eliminating A,B

$$
\begin{aligned}
& \left|\begin{array}{lll}
y & 1 & 1 \\
y^{\prime} & 3 & 5 \\
y^{\prime \prime} & 9 & 25
\end{array}\right|=0 \\
& y^{\prime \prime}-8 y^{\prime}+15=0 \quad(\text { OR }) \\
& y=\mathrm{A} e^{p 1 x}+B e^{p 2 x} \text { is a solution of }\left(\mathrm{D}-\mathrm{p}_{1}\right)\left(\mathrm{D}-\mathrm{p}_{2}\right) \mathrm{y}=0 \\
& (D-3)(D-5) y=0 \Rightarrow\left(\mathrm{D}^{2}-8 \mathrm{D}+15\right) \mathrm{y}=0(\text { or }) \frac{d^{2} y}{d x^{2}}-8 \frac{d y}{d x}+15 \mathrm{y}=0
\end{aligned}
$$

8. $\mathrm{y}=c_{1} e^{-x}+c_{2} e^{2 x} \quad$ (TRB)

$$
\begin{aligned}
& (\mathrm{D}-1)(\mathrm{D}+2) \mathrm{y}=0 \\
& \left(\mathrm{D}^{2}-\mathrm{D}+2\right) \mathrm{y}=0 \Rightarrow \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}+2 \mathrm{y}=0
\end{aligned}
$$

9. $\mathrm{y}=\mathrm{A} e^{2 x}+B e^{-2 x}$

$$
\begin{aligned}
& (\mathrm{D}+2)(\mathrm{D}-2) \mathrm{y}=0 \\
& \left(\mathrm{D}^{2}+4\right) \mathrm{y}=0 \Rightarrow \frac{\boldsymbol{d}^{2} \boldsymbol{y}}{\boldsymbol{d x ^ { 2 }}} \mathbf{4 y}=\mathbf{0}
\end{aligned}
$$

10. $\mathrm{y}=e^{3 x}(\mathrm{C} \cos 2 \mathrm{x}+\mathrm{D} \sin 2 \mathrm{x})$

$$
\begin{equation*}
\mathrm{y} e^{-3 x}=\mathrm{C} \cos 2 \mathrm{x}+\mathrm{D} \sin 2 \mathrm{x} \tag{1}
\end{equation*}
$$

Differentiating with respect ' x '

$$
\begin{aligned}
& \mathrm{y}\left(-3 e^{-3 x}\right)+e^{-3 x} \mathrm{y}^{\prime}=-2 \mathrm{C} \sin 2 \mathrm{x}+2 \mathrm{D} \cos 2 \mathrm{x} \\
& e^{-3 x}\left[-3 \mathrm{y}+\mathrm{y}^{\prime}\right]=-2 \mathrm{C} \sin 2 \mathrm{x}+2 \mathrm{D} \cos 2 \mathrm{x}
\end{aligned}
$$

Again Differentiating with respect ' x '

$$
\begin{gathered}
e^{-3 x}\left(-3 y^{\prime}+y^{\prime}\right)-3\left(3 \mathrm{y}+\mathrm{y}^{\prime}\right) e^{-3 x}=-4 \mathrm{C} \cos 2 \mathrm{x}-4 \mathrm{D} \sin 2 \mathrm{x}=-4(\mathrm{C} \cos 2 \mathrm{x}+\mathrm{D} \sin 2 \mathrm{x}) \\
e^{-3 x}\left[\mathrm{y}^{\prime}-6 \mathrm{y}{ }^{\prime}+9 \mathrm{y}\right]=-4 \mathrm{y} e^{-3 x} \Rightarrow \mathrm{y}^{\prime}-6 \mathrm{y}^{\prime}+13 \mathrm{y}=0 \quad(\mathrm{OR})
\end{gathered}
$$

If $p=\alpha \pm i \beta$,then Differential equation,

$$
\left(\mathrm{D}^{2}-(\text { sum of roots }) \mathrm{D}+\text { Product of roots }\right) \mathrm{y}=0
$$

$\left(D^{2}-(3+i 2+3-i 2) D+(3+i 2)(3-i 2)\right) y=0$
$\left(\mathrm{D}^{2}-6 \mathrm{D}+13\right) \mathrm{y}=0$
$11 . \mathrm{y}=(\mathrm{Ax}+\mathrm{B}) e^{3 x}$
Differential equation is,(D-3)(D-3) $\mathrm{y}=0$
($\left.D^{2}-9\right) y=0$
Solutions of first order and first degree equations:
(i) Variable separable method
(ii) Homogeneous differential equation
(iii) Linear differential equation

Variable separable :

Variables of a differential equation are to be rearranged in the form

$$
f_{1}(x) g_{2}(y) d x+f_{2}(x) g_{1}(y) d y=0
$$

i.e., the equation can be written as

$$
\begin{aligned}
& \quad f_{2}(x) g_{1}(y) d y=-f_{1}(x) g_{2}(y) d x \\
& \frac{g_{1}(\boldsymbol{y})}{g_{2}(\boldsymbol{y})} \boldsymbol{d} \boldsymbol{y}=\frac{\boldsymbol{f}_{1}(x)}{f_{2}(x)} \boldsymbol{d} \boldsymbol{x} \text { and integrating on both sides } \\
& \int \frac{g_{1}(\boldsymbol{y})}{g_{2}(\boldsymbol{y})} \boldsymbol{d} \boldsymbol{y}=\int \frac{f_{1}(x)}{f_{2}(x)} \boldsymbol{d} \boldsymbol{x}
\end{aligned}
$$

1. $\frac{d y}{d x}+\left(\frac{1-y^{2}}{1-x^{2}}\right)^{\frac{1}{2}}=0$

$$
\frac{d y}{\sqrt{1-y^{2}}}=\frac{d x}{\sqrt{1-x^{2}}}
$$

integrating $\int \frac{d y}{\sqrt{1-y^{2}}}=\int \frac{d x}{\sqrt{1-x^{2}}}$

$$
\sin ^{-1} y-\sin ^{-1} x=\mathrm{c}
$$

2. Solve $\frac{d y}{d x}=y^{2} x^{3}$

$$
\frac{d y}{y^{2}}=\frac{d x}{x^{3}}
$$

integrating $\int \frac{d y}{y^{2}}=\int x^{3} d x$

$$
-\frac{1}{y}=\frac{x}{4}^{4}+\mathrm{c}
$$

3. Solve $\frac{d y}{d x}=\frac{y+2}{x-1}$

$$
\frac{d y}{y+2}=\frac{d x}{x-1}
$$

integrating $\int \frac{d y}{y+2}=\int \frac{d x}{x-1}$

$$
\begin{aligned}
& \log (y+2)=\log (x-1)+\log c \\
& \log \left(\frac{y+2}{x-1}\right)=\log c \\
& \frac{y+2}{x-1}=c
\end{aligned}
$$

4. Solve e^{x} tanydx $+\left(1-e^{x}\right) \sec ^{2} y d y=0$

$$
\frac{e^{x}}{1-e^{x}} \mathrm{dx}=-\frac{\sec ^{2} y d y}{\tan y}
$$

integrating $\int \frac{e^{x}}{1-e^{x}} \mathrm{dx}=-\int \frac{\sec ^{2} y d y}{\tan y}$

$$
-\log \left(1-e^{x}\right)=-\log \tan y+\log c
$$

$$
\log \left(\frac{\tan y}{1-e^{x}}\right)=\log c
$$

$$
\frac{\tan y}{1-e^{x}}=\log c
$$

5. Solve $\mathrm{x} \sqrt{1+y^{2}}+\mathrm{y} \sqrt{1+x^{2}} \frac{d y}{d x}$

$$
\frac{x d x}{\sqrt{1+x^{2}}}=-\frac{y d y}{\sqrt{1+y^{2}}}
$$

integrating $\int \frac{x d x}{\sqrt{1+x^{2}}}=-\int \frac{y d y}{\sqrt{1+y^{2}}}$
$\times 2 \Rightarrow \int \frac{2 x d x}{\sqrt{1+x^{2}}}=-\int \frac{2 y d y}{\sqrt{1+y^{2}}}$
$2 \sqrt{1+x^{2}}=-2 \sqrt{1+y^{2}}+\mathrm{c}$
6. Solve $\sqrt{1-x^{2}} \sin ^{-1} x d y+y d x=0$

$$
\frac{d y}{y}=-\frac{d x}{\sin ^{-1} x \sqrt{1-x^{2}}}
$$

integrating $\int \frac{d y}{y}=-\int \frac{d x}{\sin ^{-1} x \sqrt{1-x^{2}}}$

$$
\int \frac{d y}{y}=-\int \frac{d u}{u} \quad ; \text { let } \mathrm{u}=\sin ^{-1} x, \mathrm{~d} \mathrm{u}=\frac{1}{\sqrt{1-x^{2}}} d x
$$

$\log y=-\log u+\log c$
$\mathrm{yu}=\mathrm{c} \Rightarrow \mathrm{y} \sin ^{-1} x=\mathrm{c}$
7. Solve $y d x-x d y+3 x^{2} y^{2} e^{x^{3}} d x=0$
$\frac{y d x-x d y}{y^{2}}+3 x^{2} e^{x^{3}} d x=0$
$\mathrm{d}\left(\frac{x}{y}\right)+3 x^{2} e^{x^{3}} d x=0$
integrating $\int \mathrm{d}\left(\frac{x}{y}\right)+\int 3 x^{2} e^{x^{3}} d x=0$
$\frac{x}{y}+e^{x^{3}}=\mathrm{c}$

Homogeneous Differential Equations

A differential equation of the form $\frac{d y}{d x}=\frac{f(x, y)}{g(x, y)}$ OR $\frac{d y}{d x}=\mathrm{f}\left(\frac{y}{x}\right)$ is called a Homogeneous equation. Where $f(x, y)$ and $g(x, y)$ are homogeneous equation of the same degree.

Ex: $\frac{d y}{d x}=\frac{2 x y}{x^{2}+y^{2}}$
In such case, $\mathbf{y}=\mathbf{v x} \Rightarrow \frac{d y}{d x}=\mathbf{v}+\mathbf{x} \frac{d v}{d x}$

1. Solve $\frac{d y}{d x}=\frac{y}{x}+\tan \frac{y}{x}$

Put $\mathrm{y}=\mathrm{vx} \Rightarrow \frac{d y}{d x}=\mathrm{v}+\mathrm{x} \frac{d v}{d x}$

$$
\mathrm{v}+\mathrm{x} \frac{d v}{d x}=\mathrm{v}+\tan \mathrm{v}
$$

$$
\mathrm{x} \frac{d v}{d x}=\tan v
$$

$$
\frac{d v}{\tan v}=\frac{d x}{x}
$$

integrating $\int \frac{d v}{\operatorname{tanv}}=\int \frac{d x}{x}$
$\log \sin v=\log x+\log c$
$\sin \mathrm{v}=\mathrm{xc}$, put $\mathrm{v}=\frac{y}{x}$
$\sin \frac{y}{x}=x c$
2. Solve $\frac{d y}{d x}+\frac{y}{x}=\frac{y^{2}}{x^{2}}$

Put $\mathrm{y}=\mathrm{vx} \Rightarrow \frac{d y}{d x}=\mathrm{v}+\mathrm{x} \frac{d v}{d x}$
$\mathrm{v}+\mathrm{x} \frac{d v}{d x}+\mathrm{v}=v^{2}$
$\mathrm{x} \frac{d v}{d x}=v^{2}-2 \mathrm{v}$
$\frac{d v}{v^{2}-2 v}=\frac{d x}{x}$
$\frac{d v}{v(v-2)} \quad=\frac{d x}{x} \quad\left\{\frac{1}{v(v-2)}=\frac{A}{v}+\frac{B}{v-2} \quad, \mathrm{~A}=-\frac{1}{2} \quad \mathrm{~B}=\frac{1}{2}\right.$
$-\frac{1}{2} \int \frac{d v}{v}+\frac{1}{2} \int \frac{d v}{v-2}=\int \frac{d x}{x}$
$-\frac{1}{2} \log v+\frac{1}{2} \log (v-2)=\log x+\log c$
$\frac{v-2}{v}=x^{2} c$, put $\mathrm{v}=\frac{y}{x}$
$\mathrm{v}-2=\mathrm{v} x^{2} c$
$\frac{y}{x}-2=\frac{y}{x} \times x^{2} c$
$y-2 x=y x^{2} c$
3. On putting $\mathrm{y}=\mathrm{vx}$, the homogenous differentioal equation $x^{2} d y+y(x+y) d x=0$

Becomes $\mathrm{xdv}+\left(2 \mathrm{v}+v^{2}\right) d x=0$
4. Solve $x d y-y d x=\sqrt{x^{2}+y^{2}} d x$

Ans: $\mathrm{xdv}-\sqrt{1+v^{2}} \mathrm{dx}=0$
5. Solve. $\frac{d y}{d x}=\frac{y^{3}+3 x^{2} y}{x^{3}+3 x \quad y^{2}}$

Ans: $\frac{d x}{x}=\frac{\left(1+3 v^{2}\right)}{2 v\left(v^{2}-1\right)} d v$

Linear differential equations

$>$ The linear equqtion in y of the first order is of the form $\frac{d y}{d x}+\mathrm{Px}=\mathrm{Q}(\mathrm{x})$, where P, Q are functions in x
The general solution is $\mathrm{y}(\mathrm{I} . \mathrm{F})=\int Q(I . F) d x+c$
Where Integral Factor(I.F) $=e^{\int P d x}$
$>$ The linear equqtion in x of the first order is of the form $\frac{d x}{d y}+P y=Q(y)$, where P, Q are functions in y
The general solution is yxI.F) $=\int Q(I . F) d y+c$
Where Integral Factor(I.F) $=e^{\int P d y}$

Note :

Integral factor of D.E is (I.F)
Then, $\mathrm{P}=\frac{(I . F)^{\prime}}{I . F}$

1. Find the integral factor of $\left(1-x^{2}\right) \frac{d y}{d x}+2 x y=x \sqrt{1-x^{2}}$
$\div\left(1-x^{2}\right) \Rightarrow \frac{d y}{d x}+\frac{2 x}{\left(1-x^{2}\right)} y=\frac{x \sqrt{1-x^{2}}}{\left(1-x^{2}\right)}$
$\mathrm{P}=\frac{2 x}{\left(1-x^{2}\right)}, \mathrm{Q}=\frac{x \sqrt{1-x^{2}}}{\left(1-x^{2}\right)}$
I.F $=e^{\int P d x}=e^{\int \frac{2 x}{\left(1-x^{2}\right)} d x}=e^{-\log \left(1-x^{2}\right)}=\frac{1}{\left(1-x^{2}\right)}$
2. Find I.F of $\frac{d y}{d x}+y \cot x=\sin 2 x$
I.F $=e^{\int P d x}=e^{\int \cot d x}=e^{\log \sin x}=\sin x$
3. Find I.F of $\left(1+x^{2}\right) \frac{d y}{d x}+y=e^{\tan ^{-1} x}$

$$
\div\left(1-+x^{2}\right) \Rightarrow \frac{d y}{d x}+\frac{1}{\left(1+x^{2}\right)} y=\frac{e^{\tan ^{-1} x}}{\left(1+-x^{2}\right)}
$$

I.F $=e^{\int \frac{1}{\left(1+x^{2}\right)} d x}=e^{\tan ^{-1} x}$
4. Find the solution of $\frac{d y}{d x}+\frac{2 x}{\left(1+x^{2}\right)} y=0$
I.F $=e^{\int \frac{2 x}{\left(1+x^{2}\right)} d x}=e^{\log \left(1+x^{2}\right)}=\left(1+x^{2}\right)$

The solution is, $\mathrm{y}(\mathrm{I} . \mathrm{F})=\int Q(I . F) d x+c$
$y\left(1+x^{2}\right)=\int 0 d x+c$
$y\left(1+x^{2}\right)=c$
5. If the integral factor of D.E is secx, find $P(x)$
$\mathrm{P}(\mathrm{x})=\frac{(I . F)^{\prime}}{I . F}=\frac{\sec x \tan x}{\sec x}=\tan \mathrm{x}$
6. If e^{x} is an integral factor of D.E . Find $\mathrm{P}(\mathrm{x})$

$$
\mathrm{P}(\mathrm{x})=\frac{(I . F)^{\prime}}{I . F}=\frac{e^{x}}{e^{x}}=1
$$

7. If $e^{f(x)}$ is IF of D.E , then $\mathrm{P}(\mathrm{x})=f^{\prime}(x)$

Exercise

1. Solve,$\frac{d y}{d x}+\mathrm{y}=\mathrm{x}$, Ans: $e^{x}(y-x+1)=c$
2. Find IF of $\frac{d y}{d x}+\mathrm{xy}=\mathrm{x}$, ans: $e^{\frac{x^{2}}{2}}$
3. Find IF of $\frac{d y}{d x}+\frac{y}{x}=\sin \left(x^{2}\right)$ Ans : x
4. Solve $\frac{d y}{d x}+2 y \tan x=\sin x$, Ans: $y=\cos x+C \cos ^{2} x$
5. Find I.F of $\frac{d y}{d x}-3 y=6$, Ans: $e^{-3 x^{2}}$
6. Find the solution of $\frac{d y}{d x}+2 y-3=0$, Ans: $y e^{2 x}=\frac{3 e^{2 x}}{2}+c$

Bernoulli's equation

An equation of the form $\frac{d y}{d x}+p y=Q y^{n}$, Where P, Q are functions in x only.
$\div y^{n} \Rightarrow y^{-n} \frac{d y}{d x}+P y^{1-n}=Q$
Put $z=y^{1-n}$
$\frac{d z}{d x}=(1-n) y^{-n} \frac{d y}{d x}$
$\frac{1}{(1-n)} \frac{d z}{d x}=y^{-n} \frac{d y}{d x}$
$(1) \Rightarrow \frac{1}{(1-n)} \frac{d z}{d x}+\mathrm{Pz}=\mathrm{Q}$, which is linear equation in z

1. Solve, $(\mathrm{x}+1) \frac{d y}{d x}+1=2 e^{-y}$
$\div e^{-y} \Rightarrow e^{y}(x+1) \frac{d z}{d x}+e^{y}=2$
Let $z=e^{y} \Rightarrow \frac{d z}{d x}=e^{y} \frac{d y}{d x}$
(1) $\Rightarrow(\mathrm{x}+1) \frac{d z}{d x}+\mathrm{Z}=2$
$\div(\mathrm{x}+1) \Rightarrow \frac{d z}{d x}+\frac{1}{(x+1)} z=\frac{2}{(x+1)}$
$I . F=e^{\int \frac{d x}{(x+1)}=(x+1)}$
The general solution is, $\mathrm{z} e^{\int p d x}=\int Q e^{\int P d x} d x+c$
$Z(x+1)=\int \frac{2}{(x+1)}(x+1) d x+c$
$\mathrm{Z}(\mathrm{x}+1)=2 \mathrm{x}+\mathrm{c}$
2. Find the I.F of $\frac{d y}{d x}\left(x^{2} y^{3}+x y\right)=1$
$x^{2} y^{3}+x y=\frac{d x}{d y}$
$\div x^{2} \Rightarrow \frac{1}{x^{2}} \frac{d x}{d y}-\frac{y}{x}=y^{3}$
put $z=-\frac{1}{x}$
$\frac{d z}{d y}=\frac{1}{x^{2}} \frac{d x}{d y}$
(1) $\Rightarrow \frac{d z}{d y}+z y=y^{3}$
(2) I.F $=e^{\int p d y}=e^{\int y d y}=e^{\frac{y^{2}}{2}}$

Exercise

1. Find I F of $\frac{d y}{d x}+x \tan y=x^{3}$,Ans: $e^{\frac{x^{2}}{2}}$
2. Find the I.F of $\frac{d y}{d x}+y \cos x=y^{n} \sin 2 \mathrm{x}$, Ans: I F $=e^{-(1-n) \sin x}$

Equation of the first order with higher degree

We shall denote $\frac{d y}{d x}$ by ' p '
The D.E of the first order and nth degree, $p^{n}+A_{1} p^{n-1}+A_{2} p^{n-2 A}+. . .+A_{n}=0$

Where $A_{1}, A_{2}, A_{3}, \ldots . . A_{n}$ denote functions of x and y
In this case resolve the given equation into factor of first degree,
$\left(\mathrm{p}-R_{1}\right)\left(\mathrm{p}-R_{2}\right)\left(\mathrm{p}-R_{3}\right) \ldots \ldots\left(\mathrm{p}-R_{n}\right)=0$
This implies, $\mathrm{p}=R_{1}, \mathrm{p}=R_{2}, \mathrm{p}=R_{3}, \ldots \ldots \mathrm{p}=R_{n}$
Solve the equation ,then we get,
$\varphi_{1}\left(x, y, c_{1}\right)=0, \varphi_{2}\left(x, y, c_{2}\right)=0, \varphi_{3}\left(x, y, c_{3}\right)=0, \ldots \ldots, \varphi_{n}\left(x, y, c_{n}\right)=0$,
Where $c_{1}, c_{2}, c_{3}, \ldots . ., c_{n}$ are constant
The solution of D.E is, $\varphi_{1}\left(x, y, c_{1}\right) \varphi_{2}\left(x, y, c_{2}\right) \varphi_{3}\left(x, y, c_{3}\right) \ldots \ldots, \varphi_{n}\left(x, y, c_{n}\right)=0$

1. Solve, $p^{2}-5 p+6=0$ (Or) $\left(\frac{d y}{d x}\right)^{2}-5 \frac{d y}{d x}+6=0$
$\Rightarrow \quad(\mathrm{p}-2)(\mathrm{p}-3)=0$
$p=2, p=3$
$\frac{d y}{d x}=2, \frac{d y}{d x}=3$
$d y=2 d x \quad, \mathrm{dy}=3 \mathrm{dx}$
Integrating, $\mathrm{y}=2 \mathrm{x}+c_{1}, \mathrm{y}=3 \mathrm{x}+c_{2}$
$\mathrm{y}-2 \mathrm{x}-c_{1}=0, \mathrm{y}-3 \mathrm{x}-c_{2}=0$
The solution is, $\left(\mathrm{y}-2 \mathrm{x}-c_{1}\right)\left(\mathrm{y}-3 \mathrm{x}-c_{2}\right)=0$
2. Solve, $\mathrm{p}(\mathrm{p}-\mathrm{y})=\mathrm{x}(\mathrm{x}+\mathrm{y})$

$$
\begin{gathered}
p^{2}-p y-x^{2}-x y=0 \\
p^{2}-x^{2}-y(x+p)=0 \\
(p+x)(p-x)-y(x+p)=0 \\
(p+x)(p-x-y)=0
\end{gathered}
$$

$P=-x, p=x+y$
$\frac{d y}{d x}=-x \Rightarrow y=-\frac{x^{2}}{2}+c_{1} \Rightarrow\left(2 \mathrm{y}+x^{2}-c_{1}\right)=0$
$\frac{d y}{d x}=\mathrm{x}+\mathrm{y} \Rightarrow \frac{d y}{d x} \quad-\mathrm{y}=\mathrm{x}$
I.F $=e^{\int-d x}=e^{-x}$

The solution, $\mathrm{y} e^{-x}=\int x e^{-x} d x+c_{2}$
$\mathrm{y} e^{-x}=-x e^{-x}-e^{-x}+c_{2} \Rightarrow\left(y+x+1-c_{2} e^{-x}\right)=0$
the solution is, $\Rightarrow\left(2 \mathrm{y}+\mathrm{x}^{2}-c_{1}\right)\left(\mathrm{y}+\mathrm{x}+1-c_{2} e^{-x}\right)=0$
3. Solve, $x^{2} p^{2}+3 x y p+2 y^{2}=0$ (TRB)
$x^{2} p^{2}+2 x y p+3 x y p+2 y^{2}=0$
$x p(x p+2 y)+y(x p+2 y)=0$
$(p x+y)(x p+2 y)=0$
$P \mathrm{x}=-\mathrm{y}, \mathrm{xp}=-2 \mathrm{y}$
$\frac{d y}{d x} \mathrm{x}=-\mathrm{y} \Rightarrow \log \mathrm{y}=-\log \mathrm{x}+\log c_{1} \Rightarrow\left(\mathrm{xy}-c_{1}\right)=0$
$\mathrm{xp}=-2 \mathrm{y} \Rightarrow \frac{d y}{d x} \mathrm{x}=-2 \mathrm{y} \Rightarrow \log \mathrm{y}=-2 \log \mathrm{x}+\log c_{1} \Rightarrow\left(\mathrm{y} x^{2}-c_{2}\right)=0$
The solution is, $\left(x y-c_{1}\right)\left(\mathrm{y} x^{2}-c_{2}\right)=0$

Exercise

4. Solve, $p^{2}-7 p+10=0$,Ans: $\left(\mathrm{y}-2 \mathrm{x}-c_{1}\right)\left(\mathrm{y}-5 \mathrm{x}-c_{2}\right)=0$
5. Solve, $p^{2}-7 p+12=0$,Ans: $\left.\left(\mathrm{y}-42 \mathrm{x}-c_{1}\right)\left(\mathrm{y}-3 \mathrm{x}-c_{2}\right)=0\right]$

DIFFERENTIAL EQUATIONS TEST -1

1. What is the order and degree of the differential equation $\frac{d^{2} y}{d x^{2}}+\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=0$
(a) First order, second order
(b) second order,first degree
(c) first order, first degree
(d) second order, second degree
2. The differential equation derive from $\mathrm{y}=\mathrm{A} e^{2 x}+\mathrm{B} e^{-2 x}$ have the order, when A, B are constants
(a) 3
(b) 2
(c) 1
(d) None of these
3. The differential equation of $\mathrm{y}=\mathrm{A} e^{3 x}+B e^{5 x}$ is
(a) $y^{\prime \prime}-8 y+15 y=0$
(b) $y^{\prime \prime}+8 y+15 y=0$
(c) $y^{\prime \prime}+8 y=0$
(d) $y^{\prime \prime}=0$
4. The differential equation of $\mathrm{x}=\mathrm{A} \cos (\mathrm{pt}-\alpha)$ is
(a) $\frac{d^{2} x}{d t^{2}}=0$
(b) $\frac{d^{2} x}{d t^{2}}=-p^{2} x$
(c) $\frac{d^{2} x}{d t^{2}}=0$
(d) $\frac{d x}{d t}=-\mathrm{px}$
5. The solution of $\frac{d y}{d x}=2 x y$ is
(a) $c=\log y+x$
(b) $c=\log y-x^{2}$
(c) $c=x y$
(d) $c=y \log x$
6. The degree of the differential equation of $\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+\left(\frac{d y}{d x}\right)^{2}+\sin x+1=0$ is
(a) 1
(b) 2
(c) 3
(d) 4
7. The number of arbitrary constants in the general solution of differential equation of fouth order is
(a) 1
(b) 2
(c) 3
(d) 4
8. A homogeneous differential equation of the form $\frac{d x}{d y}=f\left(\frac{x}{y}\right)$ can be solve by making the substitution
(a) $y=v x$
(b) $v=y x$
(c) $x=v y$
(d) $\mathrm{x}=\mathrm{v}$
9. Order and degree of differential equation are always
(a) positive integer
(b) Negative integer
(c) integer
(d) None of these
10.The differential equation of $y=A \cos x-B \sin x$ is
(a) $y^{\prime \prime}-\mathrm{y}=0$
(b) $y^{\prime \prime}+y=0$
(c) $y^{\prime}+y=0$
(d) $y^{\prime \prime}+x y=0$
11.The differential equation of $\mathrm{y}=\mathrm{A} e^{x}+B e^{-x}+3 \mathrm{x}$ is
(a) $y^{\prime \prime}+x y=0$
(b) $y^{\prime \prime}+y=3 x$
(c) $y^{\prime \prime}-\mathrm{y}=-3 \mathrm{x}$
(d) $y^{\prime \prime}+y=2 x$
12.Order and degree of differential equation $\left(\frac{d^{2} y}{d x^{2}}\right)^{\frac{1}{2}}=\left(x-\frac{d y}{d x}\right)^{\frac{1}{3}}$
(a) $(3,2)$
(b) $(1,3)$
(c) $(2,1)$
(d) $(2,3)$
13.The solution of the differential equation $\frac{d y}{d x}=\frac{y+1}{x-1}$ is
(a) $\mathrm{c}=\frac{y+1}{x-1}$
(b) $\mathrm{c}=\frac{y+1}{x+1}$
(c) $\mathrm{c}=(\mathrm{y}+1)(\mathrm{x}-1)$
(d) $c(x-1)=y$
14.The general solution of differential equation $\frac{d y}{d x}=y^{2} x^{3}$
(a) $y=x^{3}+k$
(b) $y=x^{4}+k$
(c) $\mathrm{y}=\frac{-4}{x^{4}+k}$
(d) $y=$
$\mathrm{x}^{3}+e^{2 x}+k$
15.The solution of the differential equation $\frac{d y}{d x}=e^{2 x-y}+x^{3} e^{-y}$ is
(a) $x(2 x-y)+y(3-y)=c$
(b) $4 e^{y}=2 e^{2 x}+x^{4}+c$
(c) $2 e^{2 x}+e^{y}=c$
(d) $2 e^{2 x}+e^{y}+x^{4}=c$
16.The general solution of differential equation $\sin x \cos y d x-\cos x \sin y d y=0$
(a) $\sin x=x \sec y$
(b) $\mathrm{xsec} \mathrm{x}=\mathrm{csec} \mathrm{y}$
(c) $\sec x=$ cscey
(d) $\sec x=$ scey $+c$
17.The particular solution of $y^{\prime}=x e^{x}$ with initial condition $y=3$ when $x=1$
(a) $x=y e^{x}-e^{x}+3$
(b) $y=x e^{x}-e^{x}+1$
(c) $y=x e^{x}-e^{x}+3$
(d) $y=e^{x}(x+1)+3$
10. A curve passes through the point $(0,0)$ with differential equation $y^{\prime}=e^{3 x-2 y}$, then the equation of the curve is
(a) $3 e^{x}=y e^{3 x}+1$
(b) $2 e^{2 y}=3 e^{3 x}+1$
(c) $3 e^{2 y}=2 e^{3 x}$
(d) $3 e^{2 y}=2 e^{3 x}$ $+2$
19.The general solution of differential equation $\frac{d y}{d x}=\mathrm{e}^{\mathrm{x}}$
(a) $y=e^{x}+c$
(b) $y=e^{-x}+c$
(c) $\mathrm{y}=-\mathrm{e}^{\mathrm{x}}+\mathrm{c}$
(d) $x=\log y+c$
20.The differential eqution of the family parabolas $y^{2}=4 a x$ is
(a) $\frac{d y}{d x}=4\left(\frac{d y}{d x}\right)^{2}$
(b) $\mathrm{y}=2 \mathrm{x} \frac{d y}{d x}$
(c) $\frac{d^{2} y}{d x^{2}}=4$
(d) none of these
21.The differential eqution of the family of straight lines is
(a) $\frac{d y}{d x}=4\left(\frac{d y}{d x}\right)^{2}$
(b) $\mathrm{y}=2 \mathrm{x} \frac{d y}{d x}$
(c) $\frac{d^{2} y}{d x^{2}}=0$
(d) None of these
22.Differential equation of the family of circles with center at origin \& radius a is
(a) $\mathrm{X}-\mathrm{y} \frac{d y}{d x}=0$
(b) $y-x \frac{d y}{d x}=0$
(c) $x+y \frac{d y}{d x}=0$
(d) $y+x \frac{d y}{d x}=0$
23.Differential equation of the family of circles which passes through the origin \& whose centers are on the x-axis is
(a) $2 \mathrm{xy} \frac{d y}{d x}+x^{2}+y^{2}=0$
(b) $2 \mathrm{xy} \frac{d y}{d x}+x^{2}-y^{2}=0$
(c) $\mathrm{x} \frac{d y}{d x}+x^{2}-y^{2}=0$
(d) $2 y \frac{d y}{d x}+x^{2}-$

$$
y^{2}=0
$$

24.The solution of $\left(1+x^{2}\right) d y=\left(1+y^{2}\right) d x$ is
(a) $\tan ^{-1} y-\tan ^{-1} x=\tan ^{-1} c$
(b) $\tan ^{-1} y+\tan ^{-1} x=\tan ^{-1} c$
(c) $\tan ^{-1} x-\tan ^{-1} y=\tan ^{-1} c$
(d) $\tan ^{-1}\left(\frac{y}{x}\right)=\tan ^{-1} c$
25.Solution of $\left(x y^{2}+\mathrm{x}\right) \mathrm{dx}+\left(\mathrm{x} y^{2}+y\right) d y=0$ is
(a) $\left(x^{2}+1\right)=c\left(y^{2}+1\right)$
(b) $\left(x^{2}-1\right)=c\left(y^{2}-1\right)$
(c) $\left(x^{2}+1\right)\left(y^{2}+1\right)=\mathrm{c}$
(d) $\left(x^{2}-1\right)\left(y^{2}-1\right)=\mathrm{c}$

