HIGHER SECONDARY SECOND YEAR

PHYSICS

UNIT -4

ELECTROMAGNETIC INDUCTION AND
ALTERNATING CURRENT

PROBLEMS AND SOLUTIONS

1. A circular antenna of area $3 \mathbf{m}^{\mathbf{2}}$ is installed at a place in Madurai. The plane of the area of antenna is inclined at 47° with the direction of Earth's magnetic field. If the magnitude of Earth's field at that place is $4.1 \times 10^{-5} \mathrm{~T}$ find the magnetic flux linked with the antenna.
Solution: $\boldsymbol{A}=3 \mathrm{~m}^{2} ; \quad \theta=90^{\circ}-47^{\circ}=43^{\circ} ; \quad B=4.1 \times 10^{-5} \mathrm{~T}$
A Magnetic flux,

$$
\begin{aligned}
& \Phi_{B}=B A \cos \theta \\
& \Phi_{B}=4.1 \times 10^{-5} \times 3 \times \cos 43^{\circ} \\
& \Phi_{B}=4.1 \times 10^{-5} \times 3 \times 0.7314 \\
& \Phi_{B}=8.997 \times 10^{-5}= \\
& \boldsymbol{\Phi}_{\boldsymbol{B}}=\mathbf{8 9 . 9 7 \times 1 0} \mathbf{~ 1 0} \boldsymbol{W}=\mathbf{8 9 . 9 7} \boldsymbol{\mu} \boldsymbol{W b}
\end{aligned}
$$

No	Log
4.1	0.6128
3	0.4771
0.7314	1.8642
+	0.9541
Alog	8.997×10^{0}

2. A circular loop of area $5 \times 10^{-2} \mathrm{~m}^{2}$ rotates in a uniform magnetic field of 0.2 T . If the loop rotates about its diameter which is perpendicular to the magnetic field as shown in figure. Find the magnetic flux linked with the loop when its plane is (a) normal to the field (b) inclined 60° to the field and (c) parallel to the field.

Solution: $A=5 \times 10^{-2} \mathrm{~m}^{2} ; B=0.2 \mathrm{~T}$

(a) When circular loop normal to the magnetic field, then $\boldsymbol{\theta}=\mathbf{0}^{\circ}$. The magnetic flux

$$
\begin{aligned}
& \Phi_{B}=B A \cos \theta \\
& \Phi_{B}=0.2 \times 5 \times 10^{-2} \times \cos 0^{\circ} \\
& \Phi_{B}=1 \times 10^{-2} \times 1=\mathbf{1} \mathbf{X 1 0} \mathbf{1 0} \mathbf{W b}
\end{aligned}
$$

 The magnetic flux

$$
\begin{aligned}
& \Phi_{B}=B A \cos \theta \\
& \Phi_{B}=0.2 \times 5 \times 10^{-2} \times \cos 30^{\circ} \\
& \Phi_{B}=1 \times 10^{-2} \times \frac{\sqrt{3}}{2}=\frac{1.732}{2} \times 10^{-2} \\
& \Phi_{\boldsymbol{B}}=\mathbf{0 . 8 6 6} \times 10^{-2}=\mathbf{8 . 6 6} \times \mathbf{1 0}^{-\mathbf{3}} \mathbf{W l}
\end{aligned}
$$

(c) When circular loop parallel to the magnetic field, then $\boldsymbol{\theta}=\mathbf{9 0}^{\circ}$. The magnetic flux

$$
\begin{aligned}
& \Phi_{B}=B A \cos \theta \\
& \Phi_{B}=0.2 \times 5 \times 10^{-2} \mathrm{X} \cos 90^{\circ} \\
& \Phi_{B}=1 \times 10^{-2} \mathrm{X} 0=\mathbf{0}
\end{aligned}
$$

3. A cylindrical bar magnet is kept along the axis of a circular solenoid. If the magnet is rotated about its axis, find out whether an electric current is induced in the coil.
Solution:

- The magnetic field of a cylindrical magnet is symmetrical about its axis. As the magnet is rotated along the axis of the solenoid, there is no induced current in the solenoid because the flux linked with the solenoid does not change due to the rotation of the magnet

4. A closed coil of 40 turns and of area $200 \mathrm{~cm}^{2}$, is rotated in a magnetic field of flux density $\mathbf{2} \mathbf{~ W b ~ m} \mathbf{~ m}^{-2}$. It rotates from a position where its plane makes an angle of 30° with the field to a position perpendicular to the field in a time 0.2 s . Find the magnitude of the emf induced in the coil due to its rotation.
Solution: $A=200 \mathrm{~cm}^{2}=200 \times 10^{-4} \mathrm{~m}^{2} ; B=2 T ; N=40 ; t=0.2 \mathrm{~s}$
A Initially, $\theta=90^{\circ}-30^{\circ}=60$; Hence initial magnetic flux

$$
\begin{aligned}
& \Phi_{B_{i}}=B A \cos \theta \\
& \Phi_{B_{i}}=2 \times 200 \times 10^{-4} \mathrm{X} \cos 60^{\circ} \\
& \Phi_{B_{i}}=400 \times 10^{-4} \times \frac{1}{2}=200 \times 10^{-4} \\
& \Phi_{B_{i}}=2 \times 10^{-2} \mathrm{~Wb}
\end{aligned}
$$

^. Finally, $\theta=90^{\circ}-90^{\circ}=0^{\circ}$; Hence final magnetic flux

$$
\begin{aligned}
& \Phi_{B_{f}}=B A \cos \theta \\
& \Phi_{B_{f}}=2 \times 200 \times 10^{-4} \times \cos 0^{\circ} \\
& \Phi_{B_{f}}=400 \times 10^{-4} \times 1=400 \times 10^{-4} \\
& \Phi_{B_{f}}=4 \times 10^{-2} \mathrm{~Wb}
\end{aligned}
$$

^ Since the magnetic flux changes, an emf is induced which is given by

$$
\begin{aligned}
& \epsilon=N \frac{d \Phi_{B}}{d t}=N \frac{\Phi_{B_{f}}-\Phi_{B_{i}}}{t} \\
& \epsilon=40 \times \frac{4 \times 10^{-2}-2 \times 10^{-2}}{0.2}=\frac{40 \times 2 \times 10^{-2}}{0.2} \\
& \epsilon=400 \times 10^{-2}=4 \mathrm{~V}
\end{aligned}
$$

5. A straight conducting wire is dropped horizontally from a certain height with its length along east - west direction. Will an emf be induced in it? Justify your answer.
Solution:
a Yes! An emf will be induced in the wire because it moves perpendicular to the horizontal component of Earth's magnetic field and hence it cuts the magnetic lines of Earth's magnetic filed.
6. If the current i flowing in the straight conducting wire as shown in the figure decreases, find out the direction of induced current in the metallic square loop placed near it

Solution:

a From right hand rule, the magnetic field by the straight wire is directed into the plane of the square loop perpendicularly and its magnetic flux is decreasing.

* The decrease in flux is opposed by the current induced in the loop by producing a magnetic field in the same direction as the magnetic field of the wire.
a Again from right hand rule, for this inward magnetic field, the direction of the induced current in the loop is clockwise.

7. The magnetic flux passes perpendicular to the plane of the circuit and is directed into the paper. If the magnetic flux varies with respect to time as per the following relation: $\Phi_{B}=\left(2 t^{3}+3 t^{2}+8 t+5\right) \mathbf{m W b}$, what is the magnitude of the induced emf in the loop when $t=3 \mathrm{~s}$? Find out the direction of current through the circuit.
Solution: $\Phi_{B}=\left(2 t^{3}+3 t^{2}+8 t+5\right) \times 10^{-3} \mathrm{~Wb} ; N=1 ; t=3 s ; \quad \in=? ; i=$?
ค From laws of electromagnetic induction,

$$
\begin{aligned}
& \epsilon=N \frac{d \Phi_{B}}{d t}=\frac{d}{d t}\left(2 t^{3}+3 t^{2}+8 t+5\right) \times 10^{-3} \\
& \epsilon=\left(2 X 3 t^{2}+3 X 2 t+8+0\right) \times 10^{-3} \\
& \epsilon=\left(6 t^{2}+6 t+8\right) \times 10^{-3}
\end{aligned}
$$

- At $\mathbf{t}=\mathbf{3 s}$, the magnitude of induced emf

$$
\begin{aligned}
& \epsilon=\left[6(3)^{2}+6(3)+8\right] X 10^{-3} \\
& \epsilon=[54+18+8] X 10^{-3} \\
& \epsilon=\mathbf{8 0} \boldsymbol{X} \mathbf{1 0}^{-\mathbf{3}} \boldsymbol{V}=\mathbf{8 0} \boldsymbol{m} \boldsymbol{V}
\end{aligned}
$$

- As time passes, the magnetic flux linked with the loop increases.
- According to Lenz's law, the direction of the induced current should be in a way so as to oppose the flux increase.
a So, the induced current flows in such a way to produce a magnetic field opposite to the given field. This magnetic field is perpendicularly outwards.

a Therefore, the induced current flows in anticlockwise direction.

8. A conducting rod of length 0.5 m falls freely from the top of a building of height 7.2 m at a place in Chennai where the horizontal component of Earth's magnetic field is $4.04 \times 10^{-5} \mathrm{~T}$. If the length of the rod is perpendicular to Earth's horizontal magnetic field, find the emf induced across the conductor when the rod is about to touch the ground. (Assume that the rod falls down with constant acceleration of $10 \mathbf{~ m ~ s}^{-2}$)
Solution: $B_{H}=4.04 \times 10^{-5} \mathrm{~T} ; h=7.2 \mathrm{~m} ; \quad l=0.5 \mathrm{~m}$
a From the equation of motion, the final velocity of the rod is

$$
\begin{aligned}
& v^{2}=u^{2}+2 g h \\
& v^{2}=0+(2 \times 10 \times 7.2) \\
& v^{2}=144 \\
& v=\mathbf{1 2} \boldsymbol{m ~ s}^{\mathbf{- 1}}
\end{aligned}
$$

$$
[\because u=0]
$$

a The magnitude of the induced emf when the rod is about to touch the ground is

$$
\begin{aligned}
& E=B_{H} l v \\
& E=4.04 X 10^{-5} \times 0.5 \times 12 \\
& \epsilon=24.24 \times 10^{-5} V \\
& \epsilon=\mathbf{2 4 2 . 4} \mathbf{X 1 0} \mathbf{1 0}^{-\mathbf{6}} \boldsymbol{V}=\mathbf{2 4 2 . 4} \boldsymbol{\mu} \mathbf{V}
\end{aligned}
$$

9. A copper rod of length 1 rotates about one of its ends with an angular velocity ω in a magnetic field B as shown in the figure. The plane of rotation is perpendicular to the field. Find the emf induced between the two ends of the rod.

Solution:

a Consider a small element of length $d x$ at a distance x from the centre 0 of the circle described by the rod.
a As this element moves perpendicular to the field with a linear velocity $v=x \omega$, the emf developed in the element $d x$ is

$$
\begin{aligned}
& d \in=B d x v=B d x(x \omega) \\
& d \in=B \omega x d x
\end{aligned}
$$

^ This rod is made up of many such elements, moving perpendicular to the field. The emf developed across two ends is

$$
\begin{aligned}
& \epsilon=B \omega \int_{0}^{l} x d x=B \omega\left[\frac{x^{2}}{2}\right]_{0}^{l} \\
& \epsilon=\frac{\mathbf{1}}{\mathbf{2}} \boldsymbol{B} \boldsymbol{\omega} \boldsymbol{l}^{\mathbf{2}}
\end{aligned}
$$

10. A solenoid of 500 turns is wound on an iron core of relative permeability 800 . The length and radius of the solenoid are 40 cm and 3 cm respectively. Calculate the average emf induced in the solenoid if the current in it changes from 0 to 3 A in 0.4 second

Solution: : $\quad \mu_{r}=800 ; N=500 ; l=40 \mathrm{~cm}=40 \times 10^{-2} \mathrm{~m}$;

$$
r=3 \mathrm{~cm}=3 \times 10^{-2} \mathrm{~m} ; d i=3-0=3 \mathrm{~A} ; \quad d t=0.4 \mathrm{~s} ; \quad \in=?
$$

^ Self inductance,

$$
\begin{aligned}
L & =\frac{\mu_{0} \mu_{r} N^{2} A}{l}=\frac{\mu_{0} \mu_{r} N^{2} \pi r^{2}}{l} \\
L & =\frac{4 \pi \times 10^{-7} \times 800 \times(500)^{2} \times 3.14 \times\left(3 \times 10^{-2}\right)^{2}}{40 \times 10^{-2}} \\
L & =\frac{4 \times 3.14 \times 10^{-7} \times 800 \times 250000 \times 3.14 \times 9 \times 10^{-4}}{40 \times 10^{-2}} \\
L & =4 \times 3.14 \times 20 \times 250000 \times 3.14 \times 9 \times 10^{-9} \\
L & =4 \times 3.14 \times 2 \times 25 \times 3.14 \times 9 \times 10^{-4} \\
L & =3.14 \times 3.14 \times 1800 \times 10^{-4} \\
L & =1.775 \times 10^{4} \times 10^{-4} \\
L & =1.775 \mathrm{H}
\end{aligned}
$$

No	Log
3.14	0.4969
3.14	0.4969
1800	3.2553
$(+)$	4.2491
ALog	1.775×10^{4}

a Hence induced emf

$$
\begin{aligned}
& \epsilon=-L \frac{d i}{d t}=-1.775 \times \frac{3}{0.4}=-1.775 \times \frac{30}{4}=-1.775 \times 7.5 \\
& \epsilon=-13.3125 \mathrm{~V}
\end{aligned}
$$

11. The self-inductance of an air-core solenoid is 4.8 mH . If its core is replaced by iron core, then its self-inductance becomes 1.8 H . Find out the relative permeability of iron.
Solution:

$$
L_{\text {air }}=4.8 \mathrm{mH}=4.8 \times 10^{-3} \mathrm{H} \quad ; \quad L_{\text {iron }}=1.8 \mathrm{H} \quad ; \quad \mu_{r}=\text { ? }
$$

* Self inductance of air core solenoid ;

$$
L_{\text {aie }}=\frac{\mu_{0} N^{2} A}{l}
$$

a Self inductance of iron core solenoid ;

$$
L_{\text {iron }}=\frac{\mu_{0} \mu_{r} N^{2} A}{l}
$$

a Hence,

$$
\begin{aligned}
\frac{L_{\text {air }}}{L_{\text {iron }}} & =\frac{\left(\frac{\mu_{0} N^{2} A}{l}\right)}{\left(\frac{\mu_{0} \mu_{r} N^{2} A}{l}\right)}=\frac{1}{\mu_{r}} \\
\therefore \quad \mu_{r} & =\frac{L_{\text {iron }}}{L_{\text {air }}}=\frac{1.8}{4.8 \times 10^{-3}}=\frac{3 \times 10^{3}}{8}=\frac{3000}{8} \\
\mu_{r} & =375 \text { (no unit) }
\end{aligned}
$$

12. The current flowing in the first coil changes from 2 A to 10 A in 0.4 s . Find the mutual inductance between two coils if an emf of $\mathbf{6 0 ~ m V}$ is induced in the second coil. Also determine the magnitude of induced emf in the second coil if the current in the first coil is changed from 4 A to 16 A in $\mathbf{0 . 0 3} \mathbf{s}$. Consider only the magnitude of induced emf.
Solution:
(i) $d i_{1}=10-2=8 \mathrm{~A}$; $d t=0.4 \mathrm{~s} ; \quad \epsilon_{2}=60 \mathrm{mV}=60 \times 10^{-3} \mathrm{~V} ; \quad M=$?
\uparrow Magnitude of mutual induced emf is ;

$$
\epsilon_{2}=M_{21} \frac{d i_{1}}{d t}
$$

^ Hence mutual inductance between the coils,

$$
\begin{aligned}
& M_{21}=\frac{\epsilon_{2}}{\left(\frac{d i_{1}}{d t}\right)} \\
& M_{21}=\frac{60 \times 10^{-3}}{\left(\frac{8}{0.4}\right)}=\frac{60 \times 10^{-3} \times 0.4}{8}=60 \times 10^{-3} \times 0.05 \\
& \boldsymbol{M}_{21}=\mathbf{3} \times \mathbf{1 0}^{-3} \boldsymbol{H}=\mathbf{3} \mathbf{m} \mathrm{H}
\end{aligned}
$$

(ii) $d i_{1}=16-4=12 \mathrm{~A} ; d t=0.03 \mathrm{~s} ; \epsilon_{2}=$?
^ Magnitude of Induced emf in the second coil due to the rate of change of current in the first coil is

$$
\begin{aligned}
& \epsilon_{2}=M_{21} \frac{d i_{1}}{d t} \\
& \epsilon_{2}=3 \times 10^{-3} \times \frac{12}{0.03}=100 \times 10^{-3} \times 12 \\
& \epsilon_{2}=1.2 \mathrm{~V}
\end{aligned}
$$

13. Consider two coplanar, co-axial circular coils A and B as shown in figure. The radius of coil A is 20 cm while that of coil B is 2 cm . The number of turns in coils A and B are 200 and 1000 respectively. Calculate the mutual inductance between the coils. If the current in coil A changes from 2 A to 6 A in 0.04 s , determine the induced emf in coil B and the rate of change of flux through the coil B at that instant.

Solution: $N_{A}=200 ; N_{B}=1000 ; r_{A}=20 \mathrm{~cm}=20 \times 10^{-2} \mathrm{~m} ; r_{B}=2 \mathrm{~cm}=2 \times 10^{-2} \mathrm{~m}$

$$
d i_{A}=6-2=4 \mathrm{~A} ; d t=0.04 \mathrm{~s} ; M_{B A}=? ; \epsilon_{B}=\text { ? }
$$

a Mutual inductance between the coils,

$$
\begin{aligned}
& M_{B A}=\frac{N_{B} \Phi_{B}}{i_{A}}=\frac{N_{B} \mathrm{~B}_{A} \mathrm{~A}_{B}}{i_{A}}=\frac{N_{B}\left(\frac{\mu_{0} N_{A} i_{A}}{2 r_{A}}\right) \pi r_{B}^{2}}{i_{A}}=\frac{N_{B} \mu_{0} N_{A} i_{A} \pi r_{B}^{2}}{2 r_{A} i_{A}} \\
& M_{B A}=\frac{\mu_{0} N_{A} N_{B} \pi r_{B}^{2}}{2 r_{A}} \\
& M_{B A}=\frac{4 \pi \times 10^{-7} \times 200 \times 1000 \times \pi \times\left(2 \times 10^{-2}\right)^{2}}{2 \times 20 \times 10^{-2}} \\
& M_{B A}=8 \times 3.14 \times 3.14 \times 10^{-5} \\
& M_{B A}=7.887 \times 10^{1} \times 10^{-5}=7.887 \times \mathbf{1 0}^{-4} \mathbf{H}
\end{aligned} \quad \begin{array}{|c|l|l|}
\hline \text { No } & \text { Log } \\
\hline 3.14 & 0.4969 \\
3.14 & 0.4969 \\
8 & 0.9031 \\
\hline \begin{array}{l}
\text { (+) }
\end{array} & 1.8969 \\
\text { ALog } & 7.887 \times 10^{1} \\
\hline
\end{array}
$$

a Magnitude of the induced emf in the coil B,

$$
\begin{aligned}
& \epsilon_{B}=M_{B A} \frac{d i_{A}}{d t}=7.887 \times 10^{-4} \times \frac{4}{0.04}=7.887 \times 10^{-4} \times 100 \\
& \epsilon_{B}=7.887 \times 10^{-2} V=78.87 \times 10^{-3} V=78.87 \mathrm{mV}
\end{aligned}
$$

^ The rate of change of magnetic flux of coil B is

$$
\frac{\boldsymbol{d}}{\boldsymbol{d} t}\left(\mathbf{N}_{\boldsymbol{B}} \Phi_{B}\right)=\epsilon_{\boldsymbol{B}}=78.87 \times 10^{-3} \mathrm{~V}=78.87 \mathrm{~m} \mathrm{~Wb} \mathrm{~s}^{-1}
$$

14. A circular metal of area $0.03 \mathrm{~m}^{2}$ rotates in a uniform magnetic field of 0.4 T . The axis of rotation passes through the centre and perpendicular to its plane and is also parallel to the field. If the disc completes 20 revolutions in one second and the resistance of the disc is 4Ω, calculate the induced emf between the axis and the rim and induced current flowing in the disc.
Solution: : $B=0.4 \mathrm{~T} ; A=0.3 \mathrm{~m}^{2} ; f=20 \mathrm{rps} ; R=4 \Omega ; \in=$? ; $i=$?

- Area swept out by the disc in unit time $=$ Area of the disc \times frequency

$$
\frac{d A}{d t}=0.3 \times 20=0.6 \mathrm{~m}^{2}
$$

^ Hence induced emf,

$$
\epsilon=\frac{d \Phi_{B}}{d t}=\frac{d(\mathrm{~B} \mathrm{~A})}{d t}=B \frac{d A}{d t}=0.4 \times 0.6=\mathbf{0 . 2 4 V}
$$

- Thus induced current,

$$
\boldsymbol{i}=\frac{\epsilon}{R}=\frac{0.24}{4}=\mathbf{0 . 0 6 ~ A}
$$

15. A rectangular coil of area $70 \mathrm{~cm}^{2}$ having 600 turns rotates about an axis perpendicular to a magnetic field of $0.4 \mathrm{~Wb} \mathrm{~m}^{-2}$. If the coil completes 500 revolutions in a minute, calculate the instantaneous emf when the plane of the coil is (a) perpendicular to the field (b) parallel to the field and (c) inclined at 60° with the field.
Solution: $N=600 ; A=70 \mathrm{~cm}^{2}=70 \times 10^{-4} \mathrm{~m}^{2} ; B=0.4 \mathrm{~T}$;

$$
f=500 \mathrm{rpm}=\frac{500}{60}=\frac{50}{6}=8.333 \mathrm{rps}
$$

(a) When perpendicular to the field, $\theta=\omega t=0^{\circ}$

$$
\begin{aligned}
& \epsilon=\epsilon_{m} \sin \omega t=N B A \omega \sin \omega t=N B A 2 \pi f \sin \omega t \\
& \epsilon=600 \times 0.4 \times 70 \times 10^{-4} \times 2 \pi \times \frac{50}{6} \times \sin 0^{\circ}=\mathbf{0}
\end{aligned}
$$

(b) When parallel to the field, $\theta=\omega t=90^{\circ}$

$$
\begin{aligned}
& \epsilon=\epsilon_{m} \sin \omega t=N B A \omega \sin \omega t=N B A 2 \pi f \sin \omega t \\
& \epsilon=600 \times 0.4 \times 70 \times 10^{-4} \times 2 \pi \times \frac{50}{6} \times \sin 90^{\circ} \\
& \epsilon=100 \times 0.4 \times 70 \times 2 \times \frac{22}{7} \times 50 \times 1 \times 10^{-4} \\
& \epsilon=88 \times 10^{4} \times 10^{-4}=88 \mathrm{~V}
\end{aligned}
$$

(c) When inclined at 60° with the field, $\theta=\omega t=90^{\circ}-60^{\circ}=30^{\circ}$

$$
\begin{aligned}
& \epsilon=\epsilon_{m} \sin \omega t=N B A \omega \sin \omega t=N B A 2 \pi f \sin \omega t \\
& \epsilon=600 \times 0.4 \times 70 \times 10^{-4} \times 2 \pi \times \frac{50}{6} \times \sin 30^{\circ} \\
& \epsilon=100 \times 0.4 \times 70 \times 2 \times \frac{22}{7} \times 50 \times 1 \times 10^{-4} \times \frac{1}{2} \\
& \epsilon=44 \times 10^{4} \times 10^{-4}=44 \mathrm{~V}
\end{aligned}
$$

16. An ideal transformer has 460 and 40,000 turns in the primary and secondary coils respectively. Find the voltage developed per turn of the secondary if the transformer is connected to a 230 V AC mains. The secondary is given to a load of resistance $10^{4} \Omega$. Calculate the power delivered to the load.
Solution: $N_{P}=460 ; N_{S}=40000 ; V_{P}=230 \mathrm{~V} ; R_{S}=10^{4} \Omega ; \frac{V_{S}}{N_{S}}=? ; P=$?
a From the transformer equation, voltage per turn of the secondary is ;

$$
\begin{array}{ll}
& \frac{V_{S}}{N_{S}}=\frac{V_{P}}{N_{P}}=\frac{230}{460}=\frac{1}{2} \\
\therefore \quad & \frac{V_{S}}{N_{S}}=0.5 \mathrm{~V} / \text { turn }
\end{array}
$$

ค Total secondary voltage ; $\quad \boldsymbol{V}_{\boldsymbol{S}}=N_{S} X 0.5=40000 \times 0.5=20000 \mathrm{~V}$
^ Power delivered to the load,

$$
\begin{aligned}
& P_{S}=V_{S} I_{S}=V_{S} \frac{V_{S}}{R_{S}} \\
& P_{S}=\frac{20000 \times 20000}{10^{4}}=40000 \mathrm{~W} \\
& P_{S}=40 \mathrm{~kW}
\end{aligned}
$$

17. An inverter is common electrical device which we use in our homes. When there is no power in our house, inverter gives AC power to run a few electronic appliances like fan or light. An inverter has inbuilt step-up transformer which converts 12 V AC to 240 V AC . The primary coil has 100 turns and the inverter delivers 50 mA to the external circuit. Find the number of turns in the secondary and the primary current.
Solution: $V_{P}=12 \mathrm{~V} ; V_{S}=240 \mathrm{~V} ; N_{P}=100 \mathrm{~V} ; I_{S}=50 \mathrm{~mA}=50 \mathrm{X} 10^{-3} \mathrm{~A}$
A By transformer equation;.

$$
\frac{V_{S}}{V_{S}}=\frac{N_{S}}{N_{P}}=\frac{I_{P}}{I_{S}}=K
$$

a Hence the transformation ratio ;

$$
K=\frac{V_{S}}{V_{S}}=\frac{240}{12}=20
$$

^ Number of turns in secondary coil ; $\quad \boldsymbol{N}_{\boldsymbol{S}}=N_{P} K=100 \times 20=\mathbf{2 0 0 0}$
A Primary current ; $\boldsymbol{I}_{P}=I_{S} K=50 \times 10^{-3} \times 20=1000 \times 10^{-3}=1 \mathrm{~A}$
18. Write down the equation for a sinusoidal voltage of 50 Hz and its peak value is

20 V . Draw the corresponding voltage versus time graph.
Solution: $f=50 \mathrm{~Hz} ; \quad V_{m}=20 \mathrm{~V} ; \quad V=$? ; $T=$?
^ Voltage at any instant,
$V=V_{m} \sin \omega t=V_{m} \sin 2 \pi f t$
$V=20 \sin (2 X 3.14 X 50 X t)$
$V=20 \sin 314 t$

- Time for one cycle ,

$$
\begin{aligned}
& T=\frac{1}{f}=\frac{1}{50}=0.02 \mathrm{~s} \\
& \boldsymbol{T}=\mathbf{2 0} \boldsymbol{X} \mathbf{1 0}^{-\mathbf{3}} \boldsymbol{s}=\mathbf{2 0} \mathbf{~ m s}
\end{aligned}
$$

a Corresponding Wave form is shown

19. The equation for an alternating current is given by $i=77 \sin 314 t$. Find the peak current, frequency, time period and instantaneous value of current at $t=\mathbf{2} \mathbf{~ m s}$. Solution: : $i=77 \sin 314 t \quad ; \quad t=2 \mathrm{~ms}=2 \times 10^{-3} \mathrm{~s}$

* General equation for alternating current ; $i=I_{m} \sin \omega t=I_{m} \sin 2 \pi f t$
a Comparing this equation with given equation, we get
(a) Peak current ; $\boldsymbol{I}_{\boldsymbol{m}}=\mathbf{7 7} \mathrm{A}$
(b) Frequency ; $\boldsymbol{f}=\frac{\omega}{2 \pi}=\frac{314}{2 \pi}=\frac{314}{2 \times 3.14}=\frac{100}{2}=50 \mathrm{~Hz}$
(c) Time period ; $\boldsymbol{T}=\frac{1}{f}=\frac{1}{50}=\mathbf{0 . 0 2 ~ S}$
(d) At $t=2 \mathrm{~ms}$, instantaneous current

$$
\begin{aligned}
& i=77 \sin \left(314 \times 2 \times 10^{-3} \mathrm{rad}\right) \\
& i=77 \sin \left(314 \times 2 \times 10^{-3} \times \frac{180^{\circ}}{3.14}\right) \\
& i=77 \times \sin 36^{\circ} \\
& \boldsymbol{i}=77 \times 0.5877=45.26 \mathrm{~A}
\end{aligned}
$$

No	Log
77	1.8865
0.5878	1.7692
++ ALog	1.6557
	4.526×100^{1}

20. A 400 mH coil of negligible resistance is connected to an AC circuit in which an effective current of 6 mA is flowing. Find out the voltage across the coil if the frequency is 1000 Hz .
Solution: $I_{e f f}=6 \mathrm{~mA}=6 \times 10^{-3} \mathrm{~A} ; L=400 \mathrm{mH}=400 \times 10^{-3} \mathrm{H} ; f=1000 \mathrm{~Hz}$
ค Voltage across the coil of inductance L

$$
\begin{aligned}
& V_{L}=I X_{L}=I \omega L=I(2 \pi f) L \\
& V_{L}=6 \times 10^{-3} \times 2 \times 3.14 \times 1000 \times 400 \times 10^{-3} \\
& V_{L}=150.72 \times 10^{-1} \\
& V_{L}=\mathbf{1 5 . 0 7 2} \boldsymbol{V}
\end{aligned}
$$

21. A capacitor of capacitance $\frac{10^{2}}{\pi} \mu \mathrm{~F}$ is connected across a $220 \mathrm{~V}, 50 \mathrm{~Hz}$ A.C. mains. Calculate the capacitive reactance, RMS value of current and write down the equations of voltage and current.
Solution : $V_{R M S}=220 \mathrm{~V} ; f=50 \mathrm{~Hz} ; C=\frac{10^{2}}{\pi} \mu \mathrm{~F}=\frac{10^{2}}{\pi} \times 10^{-6} \mathrm{~F} ; X_{C}=? ; I_{R M S}=$?
^ Capacitive reactance ; $X_{C}=\frac{1}{\omega C}=\frac{1}{2 \pi f C}$

$$
\begin{aligned}
X_{C} & =\frac{\omega C \quad 2 \pi f C}{2 X \pi X 50 X\left(\frac{10^{2}}{\pi}\right) \times 10^{-6}}=\frac{1}{10^{-2}} \\
X_{C} & =\mathbf{1 0}^{2} \boldsymbol{\Omega}=\mathbf{1 0 0} \boldsymbol{\Omega}
\end{aligned}
$$

^ RMS value of alternating current ; $\boldsymbol{I}_{\boldsymbol{R M S}}=\frac{V_{R M S}}{X_{C}}=\frac{220}{100}=2.2 \boldsymbol{\Omega}$

- Equation for alternating voltage ;

$$
\begin{aligned}
V & =V_{m} \sin \omega t \\
V & =V_{R M S} \sqrt{2} \sin 2 \pi f t \\
V & =220 X 1.414 \sin 2 X 3.14 \times 50 X t \\
V & =\mathbf{3 1 1} \sin \mathbf{3 1 4} \boldsymbol{t}
\end{aligned}
$$

^ Equation for alternating current ;

$$
\begin{aligned}
i & =I_{m} \sin \left(\omega t+\frac{\pi}{2}\right) \\
i & =I_{R M S} \sqrt{2} \sin \left(2 \pi f t+\frac{\pi}{2}\right) \\
i & =2.2 \times 1.414 \sin \left(2 \times 3.14 \times 50 \times t+\frac{\pi}{2}\right) \\
i & =3.11 \sin \left(314 \boldsymbol{t}+\frac{\pi}{2}\right)
\end{aligned}
$$

22. Find the impedance of a series RLC circuit if the inductive reactance, capacitive reactance and resistance are $184 \Omega, 144 \Omega$ and 30Ω respectively. Also calculate the phase angle between voltage and current.
Solution: $X_{L}=184 \Omega ; X_{C}=144 \Omega ; \mathrm{R}=30 \Omega ; \mathrm{Z}=$? ; $\phi=$?
^ Impedance ;

$$
\begin{aligned}
& Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}} \\
& Z=\sqrt{30^{2}+(184-144)^{2}}=\sqrt{30^{2}+40^{2}} \\
& Z=\sqrt{900+1600}=\sqrt{2500} \\
& \mathbf{Z}=\mathbf{5 0} \boldsymbol{\Omega}
\end{aligned}
$$

^ Phase angle between voltage and current ;

$$
\begin{aligned}
\tan \phi & =\frac{X_{L}-X_{C}}{R} \\
\phi & =\tan ^{-1}\left[\frac{X_{L}-X_{C}}{R}\right]=\tan ^{-1}\left[\frac{184-144}{30}\right] \\
\phi & =\tan ^{-1}\left[\frac{40}{30}\right]=\tan ^{-1}\left[\frac{4}{3}\right] \\
\phi & =\tan ^{-1}[1.333]=\mathbf{5 3 . 1 2}
\end{aligned}
$$

^ Since the phase angle is positive, voltage leads current by 53.12° for this inductive circuit.
23. A $500 \mu \mathrm{H}$ inductor, $\frac{80}{\boldsymbol{\pi}^{2}} \mathrm{pF}$ capacitor and a 628Ω resistor are connected to form a series $R L C$ circuit. Calculate the resonant frequency and Q-factor of this circuit at resonance.
Solution: $L=500 \mu H=500 \times 10^{-6} H ; C=\frac{80}{\pi^{2}} p F=\frac{80}{\pi^{2}} \times 10^{-12} F ; \mathrm{R}=628 \Omega$
^ Resonance frequency,

$$
\begin{aligned}
& f_{r}=\frac{1}{2 \pi \sqrt{L C}}=\frac{1}{2 \pi \sqrt{500 \times 10^{-6} \times \frac{80}{\pi^{2}} \times 10^{-12}}}=\frac{1}{2 \pi X \frac{10^{-9}}{\pi} \sqrt{500 \times 80}} \\
& f_{r}=\frac{10^{9}}{2 \sqrt{500 X 80}}=\frac{10^{9}}{2 \sqrt{40000}}=\frac{10^{9}}{2 \times 200}=\frac{10^{9}}{400}=\frac{10^{9}}{4 \times 10^{2}}=\frac{1}{4} \times 10^{7} \\
& f_{r}=0.25 \times 10^{7}=2500 \times 10^{3} \mathrm{~Hz}=\mathbf{2 5 0 0} \mathrm{k} \mathrm{~Hz}
\end{aligned}
$$

a Q -factor,

$$
\begin{aligned}
& Q=\frac{V_{L}}{V_{R}}=\frac{I X_{L}}{I R}=\frac{X_{L}}{R}=\frac{\omega_{r} L}{R}=\frac{2 \pi f_{r} L}{R} \\
& Q=\frac{2 \times 3.14 \times 2500 \times 10^{3} \times 500 \times 10^{-6}}{628} \\
& Q=\frac{2 \times 2500 \times 10^{3} \times 500 \times 10^{-6}}{200}=\frac{25000 \times 10^{-3}}{2} \\
& \boldsymbol{Q}=\mathbf{1 2 5 0 0} \times \mathbf{1 0}^{-3}=\mathbf{1 2 . 5}
\end{aligned}
$$

24. Find the instantaneous value of alternating voltage $v=10 \sin \left(3 \pi X 10^{4} t\right)$ volt at (a) $\mathbf{0 ~ s}$ (b) $\mathbf{5 0 \mu s}$ (c) $\mathbf{7 5} \mu \mathrm{s}$.

Solution:

^ Voltage at any instant ; $v=V_{m} \sin \omega t$
^ Given voltage equation ; $v=10 \sin \left(3 \pi X 10^{4} t\right)$
(a) At $t=0 \mathrm{~s} ; \quad v=10 \sin 0^{\circ}=\mathbf{0}$
(b) At $t=50 \mu s$,

$$
\begin{aligned}
& v=10 \sin \left(3 \pi \times 10^{4} \times 50 \times 10^{-6}\right) \\
& v=10 \sin \left(150 \pi \times 10^{-2} \mathrm{rad}\right) \\
& v=10 \sin \left(150 \pi \times 10^{-2} \times \frac{180^{\circ}}{\pi}\right) \\
& v=10 \sin \left(1.5 \times 180^{\circ}\right)=10 \sin \left(270^{\circ}\right) \\
& v=10 \times(-1)=-10 \mathrm{~V}
\end{aligned}
$$

(c) At $t=75 \mu \mathrm{~s} \quad ; \quad v=10 \sin \left(3 \pi \times 10^{4} \times 75 \times 10^{-6}\right)$

$$
\begin{aligned}
& v=10 \sin \left(225 \pi \times 10^{-2} \mathrm{rad}\right)=10 \sin \left(225 \pi \times 10^{-2} \times \frac{180^{\circ}}{\pi}\right) \\
& v=10 \sin \left(2.25 \times 180^{\circ}\right)=10 \sin \left(405^{\circ}\right) \\
& v=10 \sin \left(360+45^{\circ}\right)=10 \sin \left(45^{\circ}\right) \\
& v=10 \times(0.7071)=7.071 \mathrm{~V}
\end{aligned}
$$

25. The current in an inductive circuit is given by $0.3 \sin \left(200 t-40^{\circ}\right)$ A. Write the equation for the voltage across it if the inductance is $\mathbf{4 0} \mathbf{~ m H}$.
Solution: $i=0.3 \sin \left(200 t-40^{\circ}\right) A ; L=40 \mathrm{mH}=40 \times 10^{-3} \mathrm{H} ; \quad V=$?
^. In an inductive circuit, the voltage leads the current by 900 . Therefore,

$$
\begin{aligned}
v & =V_{m} \sin \left(\omega t+90^{\circ}\right) \\
v & =I_{m} X_{L} \sin \left(\omega t+90^{\circ}\right) \\
v & =I_{m} \omega L \sin \left(\omega t+90^{\circ}\right) \\
v & =0.3 \times 200 X 40 \times 10^{-3} \sin \left(200 t-40^{\circ}+90^{\circ}\right) \\
v & =\mathbf{2 . 4} \sin \left(\mathbf{2 0 0} t+\mathbf{5 0}^{\circ}\right) \text { volt }
\end{aligned}
$$

26. A series RLC circuit which resonates at 400 kHz has $80 \mu \mathrm{H}$ inductor, 2000 pF capacitor and 50Ω resistor. Calculate (a) Q-factor of the circuit (b) the new value of capacitance when the value of inductance is doubled and (c) the new Q-factor.
Solution: $f_{r}=400 \mathrm{kHz}=400 \times 10^{3} \mathrm{~Hz} ; L=80 \mu H=80 \times 10^{-6} \mathrm{H}$;

$$
C=2000 p F=2000 \times 10^{-12} F \quad ; \quad R=50 \Omega
$$

(a) Q -factor of the circuit,

$$
\begin{aligned}
& Q=\frac{1}{R} \sqrt{\frac{L}{C}}=\frac{1}{50} \times \sqrt{\frac{80 \times 10^{-6}}{2000 \times 10^{-12}}}=\frac{1}{50} \times \sqrt{\frac{80 \times 10^{6}}{2000}}=\frac{1}{50} \times \sqrt{\frac{8 \times 10^{7}}{2 \times 10^{3}}} \\
& Q=\frac{1}{50} X \sqrt{4 \times 10^{4}}=\frac{2 \times 10^{2}}{50}=\frac{200}{50}=4
\end{aligned}
$$

(b) Resonance frequency ;

$$
\begin{aligned}
& f_{r}=\frac{1}{2 \pi \sqrt{L C}} \quad(\text { or }) \quad f_{r}^{2}=\frac{1}{4 \pi^{2} L C} \\
& \quad \therefore \quad C=\frac{1}{4 \pi^{2} L f_{r}^{2}}
\end{aligned}
$$

When inductance L is doubled, new capacitance,

$$
\begin{aligned}
C_{\text {new }} & =\frac{1}{4 \pi^{2}(2 L) f_{r}^{2}} \\
C_{\text {new }} & =\frac{1}{4 \times(3.14)^{2} \times 2 \times 80 \times 10^{-6} \times\left(400 \times 10^{3}\right)^{2}} \\
C_{\text {new }} & =\frac{1}{4 \times 3.14 \times 3.14 \times 2 \times 80 \times 160000} \\
C_{\text {new }} & =\frac{1}{3.14 \times 3.14 \times 640 \times 160000} \\
C_{\text {new }} & =9.906 \times 10^{-10} \\
C_{\text {new }} & \cong 10 \times 10^{-10}=1000 \times 10^{-12} \mathrm{~F} \\
C_{\text {new }} & \cong \mathbf{1 0 0 0} \mathbf{p F}
\end{aligned}
$$

(c) New Q-factor,

$$
\begin{aligned}
& Q_{\text {new }}=\frac{1}{R} \sqrt{\frac{2 L}{C_{\text {new }}}}=\frac{1}{50} \times \sqrt{\frac{2 \times 80 \times 10^{-6}}{1000 \times 10^{-12}}} \\
& Q_{\text {new }}=\frac{1}{50} \times \sqrt{\frac{160 \times 10^{6}}{1000}}=\frac{1}{50} \times \sqrt{\frac{16 \times 10^{7}}{1 \times 10^{3}}}=\frac{1}{50} \times \sqrt{16 \times 10^{4}} \\
& Q_{\text {new }}=\frac{4 \times 10^{2}}{50}=\frac{400}{50}=\mathbf{8}
\end{aligned}
$$

27. capacitor of capacitance $\frac{10^{-4}}{\pi} \mathrm{~F}$, an inductor of inductance $\frac{2}{\pi} \mathrm{H}$ and a resistor of resistance 100Ω are connected to form a series RLC circuit. When an AC supply of $220 \mathrm{~V}, 50 \mathrm{~Hz}$ is applied to the circuit, determine (a) the impedance of the circuit (b) the peak value of current flowing in the circuit (c) the power factor of the circuit and (d) the power factor of the circuit at resonance.
Solution : $C=\frac{10^{-4}}{\pi} F ; L=\frac{2}{\pi} H ; R=100 \Omega ; V_{r m s}=220 \mathrm{~V} ; f=50 \mathrm{~Hz}$ (a) Inductive reactance,

$$
X_{L}=\omega L=2 \pi f L=2 X \pi \times 50 X \frac{2}{\pi}=200 \Omega
$$

Capacitive reactance,

$$
\begin{aligned}
& X_{C}=\frac{1}{\omega C}=\frac{1}{2 \pi f C}=\frac{1}{2 \pi X 50 X \frac{10^{-4}}{\pi}}=\frac{10^{4}}{100}=\mathbf{1 0 0} \boldsymbol{\Omega} \\
& \text { Impedance } ; \quad \begin{aligned}
Z & =\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}} \\
Z & =\sqrt{100^{2}+(200-100)^{2}} \\
Z & =\sqrt{100^{2}+100^{2}} \\
Z & =\sqrt{2 X 100^{2}}=\sqrt{2} \times 100=1.414 \times 100 \\
Z & =\mathbf{1 4 1 . 4 \Omega}
\end{aligned}
\end{aligned}
$$

(b) Peak value of current,

$$
\begin{aligned}
& I_{m}=\frac{V_{m}}{Z}=\frac{V_{r m s} \sqrt{2}}{Z} \\
& I_{m}=\frac{220 \times 1.414}{141.1}=\frac{220}{100} \\
& I_{m}=2.2 \mathrm{~A}
\end{aligned}
$$

(c) Power factor of the circuit,

$$
\cos \phi=\frac{R}{Z}=\frac{100}{141.4}=\frac{1}{1.414}=\frac{1}{\sqrt{2}}=\mathbf{0 . 7 0 7}
$$

(d) Power factor of the circuit at resonance $(Z=R)$,

$$
\boldsymbol{\operatorname { c o s }} \boldsymbol{\phi}=\frac{R}{Z}=\frac{R}{R}=\mathbf{1}
$$

EXERCISE PROBLEMS

1. A square coil of side $\mathbf{3 0} \mathbf{~ c m}$ with 500 turns is kept in a uniform magnetic field of 0.4 T . The plane of the coil is inclined at an angle of 30° to the field. Calculate the magnetic flux through the coil.
Solution: $N=500$; $a=30 \mathrm{~cm}$; $A=a^{2}=900 \mathrm{~cm}^{2}=900 \times 10^{-4} \mathrm{~m}^{2}$;

$$
\theta=90^{\circ}-30^{\circ}=60^{\circ} ; B=0.4 \mathrm{~T} ; \quad \mathrm{N} \Phi_{B}=?
$$

^ Total Magnetic flux through the coil,

$$
\begin{aligned}
& N \Phi_{B}=N B A \cos \theta \\
& N \Phi_{B}=500 \times 0.4 \times 900 \times 10^{-4} \cos 60^{\circ} \\
& N \Phi_{B}=180000 \times 10^{-4} \times \frac{1}{2}=18 \times \frac{1}{2}=\mathbf{9} \mathbf{W b}
\end{aligned}
$$

2. A straight metal wire crosses a magnetic field of flux 4 mWb in a time 0.4 s . Find the magnitude of the emf induced in the wire.
Solution: $\quad \mathrm{d} \Phi_{B}=4 \mathrm{mWb}=4 \times 10^{-3} \mathrm{~Wb} ; \quad d t=0.4 \mathrm{~T} ; \quad \in=$?
a Magnitude of the emf induced in the wire,

$$
\epsilon=\frac{d \Phi_{B}}{d t}=\frac{4 \times 10^{-3}}{0.4}=\mathbf{1 0} \mathbf{X 1 0} \mathbf{0}^{-3} V=10 \mathbf{m V}
$$

3. The magnetic flux passing through a coil perpendicular to its plane is a function of time and is given by $\Phi_{B}=\left(2 t^{3}+4 t^{2}+8 t+8\right) \mathrm{Wb}$. If the resistance of the coil is 5Ω, determine the induced current through the coil at a time $t=3$ second. Solution:

* Magnitude of the induced emf,

$$
\begin{aligned}
\epsilon & =\frac{d \Phi_{B}}{d t}=\frac{d}{d t}\left(2 t^{3}+4 t^{2}+8 t+8\right) \\
& \epsilon=2 X 3 t^{2}+4 X 2 t+8+0=6 t^{2}+8 t+8 \\
\text { If } \mathbf{t}=\mathbf{3} \mathbf{s}, \quad & \in 6(3)^{2}+8(3)+8=54+24+8=\mathbf{8 6} \mathbf{V}
\end{aligned}
$$

a Then the induced current through the coil,

$$
i=\frac{\epsilon}{R}=\frac{86}{5}=17.2 \mathrm{~A}
$$

4. A closely wound circular coil of radius 0.02 m is placed perpendicular to the magnetic field. When the magnetic field is changed from 8000 T to 2000 T in $\mathbf{6 s}$, an emf of 44 V is induced in it. Calculate the number of turns in the coil.
Solution: $r=0.02 \mathrm{~m} ; \mathrm{dt}=6 \mathrm{~s} ; d B=8000-2000=6000 \mathrm{~T} ; \quad \in=44 \mathrm{~V}$

$$
\theta=90^{\circ}-90^{\circ}=0^{\circ} \quad ; \quad N=?
$$

^ Magnitude of the induced emf ;

$$
\begin{gathered}
\epsilon=N \frac{d \Phi_{B}}{d t}=N \frac{d}{d t}(B A \cos \theta)=N A \cos \theta\left(\frac{d B}{d t}\right) \\
\therefore \quad N=\frac{\epsilon}{A \cos \theta\left(\frac{d B}{d t}\right)}=\frac{\epsilon}{\pi r^{2} \cos \theta\left(\frac{d B}{d t}\right)}=\frac{44}{\frac{22}{7} \times(0.02)^{2} \cos 0^{\circ}\left(\frac{6000}{6}\right)} \\
N=\frac{44 \times 7 \times 6}{22 \times 0.0004 \times 1 \times 6000}=\frac{84}{2.4}=\frac{840}{24}=35 \mathrm{turns}
\end{gathered}
$$

5. A rectangular coil of area $6 \mathrm{~cm}^{2}$ having 3500 turns is kept in a uniform magnetic field of 0.4 T. Initially, the plane of the coil is perpendicular to the field and is then rotated through an angle of 180°. If the resistance of the coil is 35Ω, find the amount of charge flowing through the coil.
Solution: $A=6 \mathrm{~cm}^{2}=6 \times 10^{-4} \mathrm{~m}^{2} ; N=3500 ; B=0.4 \mathrm{~T} ; \theta_{i}=90^{\circ}-90^{\circ}=0^{\circ}$

$$
\theta_{f}=180^{\circ}-90^{\circ}=90^{\circ} ; \quad R=35 \Omega ; q=?
$$

^ Initial magnetic flux ; $N \Phi_{B}=N B A \cos \theta_{i}=N B A \cos 0^{\circ}=N B A$
^ Final magnetic flux ; $N \Phi_{B}=N B A \cos \theta_{f}=N B A \cos 180^{\circ}=-N B A$
^ Change in magnetic flux ; $d\left(N \Phi_{B}\right)=N A B-(-N B A)=2 N B A$
a Hence rate of change in magnetic flux (i.e.) induced emf;

$$
\begin{aligned}
& \epsilon=\frac{d\left(N \Phi_{B}\right)}{d t}=2 N B A \\
& \epsilon=2 \times 3500 \times 0.4 \times 6 \times 10^{-4}=16800 \times 10^{-4} \\
& \epsilon=168 \times 10^{-2} V
\end{aligned}
$$

a Thus induced current (rate of flow of electric charge).

$$
i=\frac{\epsilon}{R}=\frac{168 \times 10^{-2}}{35}=4.8 \times 10^{-2} \mathrm{~A}
$$

a So the amount of charge flowing through the coil,

$$
q=i t=4.8 \times 10^{-2} \times 1=4.8 \times 10^{-2} C
$$

6. An induced current of 2.5 mA flows through a single conductor of resistance 100Ω. Find out the rate at which the magnetic flux is cut by the conductor.
Solution: $R=100 \Omega ; i=2.5 \mathrm{~mA}=2.5 \times 10^{-3} \mathrm{~A} ; \quad \frac{d \Phi_{B}}{d t}=$?
^ The rate of change in magnetic flux (i.e.) induced emf

$$
\frac{\boldsymbol{d} \boldsymbol{\Phi}_{\boldsymbol{B}}}{\boldsymbol{d} t}=\epsilon=i R=2.5 \times 10^{-3} \times 100=250 \times 10^{-3}=\mathbf{2 5 0} \mathbf{m ~ W}^{\mathbf{W}} \mathbf{~ s}^{\mathbf{1}}
$$

7. A fan of metal blades of length 0.4 m rotates normal to a magnetic field of $4 X 10^{-3} \mathrm{~T}$. If the induced emf between the centre and edge of the blade is 0.02 V , determine the rate of rotation of the blade.

Solution: $l=0.4 \mathrm{~m} ; \mathrm{A}=\pi l^{2}=0.16 \pi ; \mathrm{B}=4 \times 10^{-3} \mathrm{~T} ; \epsilon_{m}=0.02 \mathrm{~V} ; \omega=$? a Maximum value of induced emf,

$$
\begin{aligned}
& \omega=9.954 \text { revolutions/second }
\end{aligned}
$$

8. A bicycle wheel with metal spokes of 1 m long rotates in Earth's magnetic field. The plane of the wheel is perpendicular to the horizontal component of Earth's field of $4 X 10^{-5} T$.If the emf induced across the spokes is 31.4 mV , calculate the rate of revolution of the wheel.
Solution: $l=1 \mathrm{~m} ; B_{H}=4 \times 10^{-5} \mathrm{~T} ; \quad \epsilon=31.4 \mathrm{mV}=31.4 \times 10^{-3} \mathrm{~V} ; \omega=$?

- Maximum value of induced emf,

$$
\begin{aligned}
\epsilon_{m} & =N B A \omega=N B\left(\pi l^{2}\right) \omega \\
\omega & =\frac{\epsilon_{m}}{N B \pi l^{2}}=\frac{31.4 \times 10^{-3}}{1 \times 4 \times 10^{-5} \times 3.14 \times 1^{2}} \\
\omega & =\frac{10 \times 10^{2}}{4}=\frac{1000}{4} \\
\omega & =250 \text { revolutions/second }
\end{aligned}
$$

9. Determine the self-inductance of $\mathbf{4 0 0 0}$ turn air-core solenoid of length $\mathbf{2 m}$ and diameter 0.04 m .
Solution : : $l=2 \mathrm{~m} ; \quad d=0.04 \mathrm{~m} ; \quad r=0.02 \mathrm{~m} ; \quad N=4000 \quad ; \quad L=$?
a Self inductance of air core solenoid,

$$
\begin{aligned}
L & =\frac{\mu_{o} N^{2} A}{l}==\frac{\mu_{o} N^{2} \pi r^{2}}{l} \\
L & =\frac{4 \pi \times 10^{-7} \times 4000^{2} \times \pi \times 0.02 \times 0.02}{2} \\
L & =2 \times 3.14 \times 3.14 \times 10^{-7} \times 16 \times 10^{6} \times 0.02 \times 0.02 \\
L & =2 \times 3.14 \times 3.14 \times 16 \times 4 \times 10^{-5} \\
L & =128 \times 3.14 \times 3.14 \times 10^{-5} \\
L & =1.262 \times 10^{3} \times 10^{-5}=1.262 \times 10^{-2} H=12.62 \times 10^{-3} H \\
\boldsymbol{L} & =\mathbf{1 2 . 6 2} \boldsymbol{m} \boldsymbol{H}
\end{aligned}
$$

10. A coil of 200 turns carries a current of $4 A$. If the magnetic flux through the coil is $\mathbf{6 \times 1 0 ^ { - 5 }} \mathbf{W b}$, find the magnetic energy stored in the medium surrounding the coil.
Solution : $N=200 ; I=4 A \quad ; \quad \Phi_{B}=6 X 10^{-5} \mathrm{~Wb} ; \quad U_{B}=$?
↔ Magnetic energy stored,

$$
\begin{aligned}
U_{B} & =\frac{1}{2} L I^{2}=\frac{1}{2}\left[\frac{N \Phi_{B}}{I}\right] I^{2}=\frac{1}{2} N \Phi_{B} I \\
U_{B} & =\frac{1}{2} \times 200 \times 6 \times 10^{-5} \times 4 \\
U_{B} & =100 \times 6 \times 10^{-5} \times 4=2400 \times 10^{-5} J \\
U_{B} & =0.024 \mathrm{~J}
\end{aligned}
$$

11. A 50 cm long solenoid has 400 turns per cm . The diameter of the solenoid is 0.04 m . Find the magnetic flux linked with each turn when it carries a current of 1 A .
Solution: $\quad l=50 \mathrm{~cm}=0.5 \mathrm{~m}$; $n=400$; $N=n l=400 \times 50=20000$;

$$
d=0.04 \mathrm{~m} ; \quad r=0.02 \mathrm{~m} \quad ; \quad I=1 \mathrm{~A} \quad ; \quad \Phi_{B}=\text { ? }
$$

\uparrow Let ' L ' be the self inductance of the solenoid, magnetic flux is,

$$
\Phi_{B}=L I=\frac{\mu_{o} N^{2} A}{l} I=\frac{\mu_{o} N^{2} \pi r^{2}}{l} I
$$

$$
\begin{aligned}
\Phi_{B} & =\frac{4 \pi \times 10^{-7} 20000^{2} \times 3.14 \times 0.02^{2}}{0.5} \times 1 \\
\Phi_{B} & =\frac{4 \times 3.14 \times 10^{-7} \times 4 \times 10^{8} \times 3.14 \times 0.0004}{0.5} \times 1 \\
\Phi_{B} & =\frac{64 \times 3.14 \times 3.14 \times 10^{-3}}{0.5} \\
\Phi_{B} & =128 \times 3.14 \times 3.14 \times 10^{-3} \\
\Phi_{B} & =1.262 \times 10^{3} \times 10^{-3}=\mathbf{1} .262 \mathrm{~Wb}
\end{aligned}
$$

a. Hence magnetic flux linked with each turn

No	Log
128	2.1072
3.14	0.4969
3.14	0.4969
$+{ }^{+}+$	3.1010
ALog	1.262×10^{3}

$$
\frac{\boldsymbol{\Phi}_{B}}{N}=\frac{1.262}{20000}=\mathbf{0 . 6 3 1} \mathbf{X 1 0} 0^{-4} \mathrm{~Wb}
$$

12. A coil of 200 turns carries a current of 0.4 A . If the magnetic flux of $4 \mathbf{m W b}$ is linked with each turn of the coil, find the inductance of the coil.
Solution: $N=200 ; \quad I=0.4 \mathrm{~A} ; \Phi_{B}=4 \mathrm{mWb}=4 X 10^{-3} \mathrm{~Wb} ; \quad L=$?
^ Self inductance of the coil,

$$
L=\frac{N \Phi_{B}}{I}=\frac{200 \times 4 \times 10^{-3}}{0.4}=2000 \times 10^{-3}=2 \boldsymbol{H}
$$

13. Two air core solenoids have the same length of 80 cm and same cross-sectional area $5 \mathbf{~ c m}^{2}$. Find the mutual inductance between them if the number of turns in the first coil is $\mathbf{1 2 0 0}$ turns and that in the second coil is $\mathbf{4 0 0}$ turns.
Solution: $l=80 \mathrm{~cm}=80 \times 10^{-2} \mathrm{~m} ; A=5 \mathrm{~cm}^{2}=5 \times 10^{-4} \mathrm{~m}^{2}$;

$$
N_{1}=1200 \quad ; \quad N_{2}=400 \quad ; \quad M=?
$$

- Mutual inductance between the coils,

$$
\begin{aligned}
M & =\frac{\mu_{o} N_{1} N_{2} A}{l}=\frac{4 \pi \times 10^{-7} \times 1200 \times 400 \times 5 \times 10^{-4}}{80 \times 10^{-2}} \\
M & =4 \pi \times 15 \times 400 \times 5 \times 10^{-9}=3.14 \times 12 \times 10^{-5} \\
M & =37.68 \times 10^{-5} \mathrm{H}=0.3768 \times 10^{-3} \mathrm{H}=\mathbf{0 . 3 7 6 8} \mathbf{m} \mathbf{H}
\end{aligned}
$$

14. A long solenoid having 400 turns per cm carries a current 2 A . A 100 turn coil of cross-sectional area $4 \mathrm{~cm}^{2}$ is placed co-axially inside the solenoid so that the coil is in the field produced by the solenoid. Find the emf induced in the coil if the current through the solenoid reverses its direction in 0.04 sec .
Solution: : $n_{1}=400 ; N_{1}=400 \times 100=4 \times 10^{4} ; N_{2}=100$;

$$
A=4 \mathrm{~cm}^{2}=4 \times 10^{-4} \mathrm{~m}^{2} ; \quad I_{1}=2 \mathrm{~A} ; \quad t=0.04 \mathrm{~s}
$$

- Mutual inductance,

$$
\begin{aligned}
M & =\frac{\mu_{o} N_{1} N_{2} A}{l}=\frac{4 \pi \times 10^{-7} \times 4 \times 10^{4} \times 100 \times 4 \times 10^{-4}}{1} \\
M & =64 \pi \times 10^{-5}=64 \times 3.14 \times 10^{-5} \\
M & =200.96 \times 10^{-5}=2.0096 \times 10^{-3} \\
M & \cong \mathbf{2} \times \mathbf{1 0}^{-3} \mathbf{H}
\end{aligned}
$$

a If the current through the solenoid is reversed its direction, the emf inuced in the coil is,

$$
\begin{aligned}
& \epsilon_{2}=M \frac{d I_{1}}{d t}=2 \times 10^{-7} \times \frac{2-(-2)}{0.04}=2 \times 10^{-3} \times \frac{4}{0.04} \\
& \epsilon_{2}=2 \times 10^{-3} \times 100=2 \times 10^{-1} V=\mathbf{0 . 2} \mathbf{V}
\end{aligned}
$$

15. A 200 turn circular coil of radius 2 cm is placed co-axially within a long solenoid of $\mathbf{3 ~ c m}$ radius. If the turn density of the solenoid is $\mathbf{9 0}$ turns per $\mathbf{c m}$, then calculate mutual inductance of the coil and the solenoid.
Solution: $r=2 \mathrm{~cm}=2 \times 10^{-2} \mathrm{~m} ; N_{1}=200 ; N_{2}=90 \times 100=9000$

$$
\begin{aligned}
& \text { Mutual inductance of the coil and the solenoid, } \\
& M=\frac{\mu_{o} N_{1} N_{2} A}{l}=\frac{\mu_{o} N_{1} N_{2} \pi r^{2}}{l} \\
& M=\frac{4 \pi \times 10^{-7} \times 200 \times 9000 \times 3.14 \times\left(2 \times 10^{-2}\right)^{2}}{1} \\
& M=3.14 \times 3.14 \times 288 \times 10^{-6}=2.839 \times 10^{3} \times 10^{-6} \\
& M=2.839 \times \mathbf{1 0}^{-3} \boldsymbol{H}=\mathbf{2 . 8 3 9} \mathbf{m} \mathbf{H}
\end{aligned}
$$

No	Log
3.14	0.4969
3.14	0.4969
288	2.4594
$+{ }^{(+)}$	3.4532
ALog	2.839×10^{3}

16. The solenoids S_{1} and S_{2} are wound on an iron-core of relative permeability 900 . Their areas of their cross-section and their lengths are the same and are $4 \mathbf{c m}^{2}$ and 0.04 m respectively. If the number of turns in S_{1} is 200 and that in S_{2} is 800 , calculate the mutual inductance between the solenoids. If the current in solenoid 1 is increased form 2 A to 8 A in 0.04 second, calculate the induced emf in solenoid 2.
Solution: $\mu_{r}=900 ; A=4 \mathrm{~cm}^{2}=4 \times 10^{-4} \mathrm{~m}^{2} ; l=0.04 \mathrm{~m} ; \quad N_{1}=200$

$$
N_{2}=800 ; d I_{1}=8-2=6 \mathrm{~A} ; \quad d t=0.04 \mathrm{~s} ; M=? ; \quad \epsilon_{2}=?
$$

a Mutual inductance,

$$
\begin{aligned}
& M=\frac{\mu_{o} \mu_{r} N_{1} N_{2} A}{l}=\frac{4 \pi \times 10^{-7} \times 900 \times 200 \times 800 \times 4 \times 10^{-4}}{0.04} \\
& M=100 \pi \times 10^{-7} \times 900 \times 200 \times 800 \times 4 \times 10^{-4} \\
& M=3.14 \times 576 \times 10^{-3} \\
& \boldsymbol{M}=1.808 \times 10^{3} \times 10^{-3} \cong \mathbf{1 . 8 1} \boldsymbol{H}
\end{aligned}
$$

- The induced emf in solenoid 2 is,

$$
\begin{aligned}
& \epsilon_{2}=-M \frac{d I_{1}}{d t}=-1.81 \times \frac{6}{0.04}=-1.81 \times \frac{600}{4} \\
& \epsilon_{2}=-1.81 X 150=-271.5 \mathrm{~V}
\end{aligned}
$$

17. A step-down transformer connected to main supply of 220 V is used to operate 11V, 88 W lamp. Calculate (a) Voltage transformation ratio and (b) Current in the primary.

$$
\text { Solution: } \quad V_{P}=220 \mathrm{~V} ; V_{S}=11 \mathrm{~V} ; P_{S}=88 \mathrm{~W} ; K=? ; I_{P}=\text { ? }
$$

(a) Voltage transformation ratio ; $K=\frac{V_{S}}{V_{P}}=\frac{N_{S}}{N_{P}}=\frac{I_{P}}{I_{S}}$

$$
\therefore \quad K=\frac{V_{S}}{V_{P}}=\frac{11}{220}=\frac{\mathbf{1}}{\mathbf{2 0}}
$$

(b) We know the output power ; $P_{S}=88 \mathrm{~W}$

$$
\text { (i.e) } \quad V_{S} I_{S}=88 \mathrm{~W}
$$

Hence, the secondary current ;

$$
I_{S}=\frac{88}{V_{S}}=\frac{88}{11}=8 \mathrm{~A}
$$

a Thus, current in the primary

$$
I_{P}=K I_{S}=\frac{1}{20} \times 8=\frac{4}{10}=\mathbf{0 . 4 ~ A}
$$

18. A $200 \mathrm{~V} / 120 \mathrm{~V}$ step-down transformer of 90% efficiency is connected to an induction stove of resistance 40Ω. Find the current drawn by the primary of the transformer.
Solution: $\eta=90 \%$; $V_{P}=200 \mathrm{~V} ; V_{S}=120 \mathrm{~V} ; \quad R=40 \Omega$
^ Output power; $P_{S}=V_{S} I_{S}=V_{S} \frac{V_{S}}{R}=\frac{V_{S}^{2}}{R}=\frac{120^{2}}{40}=\frac{120 \times 120}{40}=360 \mathrm{~W}$

- Thus secondary current is; $I_{S}=\frac{P_{S}}{V_{S}}=\frac{\frac{360}{120}}{120} \mathbf{3}$
^ We know, the efficiency of the transformer ; $\quad \eta=\frac{P_{S}}{P_{P}}=\frac{V_{S} I_{S}}{V_{P} I_{P}}$

$$
\frac{90}{100}=\frac{360}{200 X I_{P}}
$$

^ The current drawn by the primary of the transformer

$$
I_{P}=\frac{360 \times 100}{200 \times 90}=\frac{36000}{18000}=2 \mathrm{~A}
$$

19. The 300 turn primary of a transformer has resistance 0.82Ω and the resistance of its secondary of 1200 turns is 6.2Ω. Find the voltage across the primary if the power output from the secondary at 1600 V is 32 kW . Calculate the power losses in both coils when the transformer efficiency is $\mathbf{8 0 \%}$.
Solution: $N_{P}=300 ; N_{S}=1200 ; R_{P}=0.82 \Omega ; R_{S}=6.2 \Omega ; V_{S}=1600 \mathrm{~V}$

$$
\begin{aligned}
& N_{P}=300 ; \quad N_{S}=1200 ; R_{P}=0.82 \Omega ; R_{S}= \\
& P_{S}=32 \mathrm{~kW}=32 \times 10^{3} \mathrm{~W} ; \eta=80 \%=\frac{80}{100}
\end{aligned}
$$

^ Output power ; $P_{S}=V_{S} I_{S}$ (or) $\boldsymbol{I}_{\boldsymbol{S}}=\frac{P_{S}}{V_{S}}=\frac{32 \times 10^{3}}{1600}=\frac{32000}{1600}=\mathbf{2 0 ~ A}$

- Transformer equation; $\frac{V_{S}}{V_{P}}=\frac{N_{S}}{N_{P}}$ (or) $\boldsymbol{V}_{\boldsymbol{P}}=\frac{V_{S} N_{P}}{N_{S}}=\frac{1600 \times 300}{1200}=\frac{4800}{12}=\mathbf{4 0 0} \mathrm{V}$
^ Efficiency ; $\quad \eta=\frac{P_{S}}{P_{P}}=\frac{P_{S}}{V_{P} I_{P}}$

$$
\begin{aligned}
\frac{80}{100} & =\frac{32 \times 10^{3}}{400 \times I_{P}} \\
\boldsymbol{I}_{\boldsymbol{P}} & =\frac{32 \times 10^{3} \times 100}{400 \times 80}=\frac{3200}{32}=\mathbf{1 0 0} \mathrm{A}
\end{aligned}
$$

^ Power loss in primary coil $=I_{P}^{2} R_{P}=100^{2} X 0.82=8200 \mathrm{~W}=8.2 \mathrm{~kW}$
^ Power loss in secondary coil $=I_{S}^{2} R_{S}=20^{2} X 6.2=2480 \mathrm{~W}=\mathbf{2 . 4 8} \mathbf{~ k W}$
20. Calculate the instantaneous value at 60°, average value and RMS value of an alternating current whose peak value is 20 A .
Solution: $I_{m}=20 \mathrm{~A} ; \omega t=60^{\circ} ; \quad i=? ; \quad I_{\text {avg }}=? ; \quad I_{r m s}=$?
A Alternating current at any instant,

$$
i=I_{m} \sin \omega t=20 \sin 60^{\circ}=20 \times \frac{\sqrt{3}}{2}=10 \times 1.732=\mathbf{1 7 . 3 2} \mathrm{A}
$$

^ Average value of alternating current,

$$
I_{\text {avg }}=\frac{2 I_{m}}{\pi}=0.637 I_{m}=0.637 \times 20=12.74 \mathrm{~A}
$$

^ RMS value of alternating current,

$$
I_{r m s}=\frac{I_{m}}{\sqrt{2}}=0.707 I_{m}=0.707 \times 20=14.14 \mathrm{~A}
$$

